La Casa de Fardos de Paja

Athena Swentzell
Bill Steen
David Bainbridge
con
David Eisenberg
1994

CHEL SEA GREEN PUBLISHING COMPANY

White River Junction, Vermont
Esta traducción no hubiera sido posible sin la estimada ayuda de muchas personas que han colaborado desinteresadamente para que todos podamos aprender con este libro.

Algunas de las personas que han colaborado en la traducción son:

GLORIA GOMEZ
BEGO Y SUSI
ALEX MARAÑAN
USOA SOLOZABAL
ISABEL
MARILUZ
ISABEL ARIONDQ
RODRIGO MILLA
AZCONA
SORAYA SIJAREZ (COORDINACION)

Gracias a todas las otras personas que también han ayudado y que por alguna razón no aparecen en esta lista.

Gracias a MARIVI por dinamizar todo el proceso y preocuparse por que llegara a feliz término.

Gracias al CENTRO DE PERMACULTURA EL HAYAL, que ha colaborado con recursos económicos para que se pudiera acabar el trabajo y comenzar a distribuir las copias.

EL Hayal
Centro de Permacultura y Experimentación Holística

NOTA: En esta traducción no ha habido intereses económicos, por lo que en su distribución tampoco debiera haberlos.
Esta paja parece pequeña y ligera, y la mayoría de la gente no puede imaginarse lo pesada que puede ser. Si la gente conociera el verdadero valor de esta paja, podría ocurrir una revolución humana, que sería suficientemente poderosa para mover el país y el mundo.

MAS ANOBU FUKUOKA,

The One Straw Revolution

Para todos aquellos que han deseado una casa sencilla y cómoda
<table>
<thead>
<tr>
<th>Capítulo</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>PREFACIO</td>
<td>7</td>
</tr>
<tr>
<td>LA HISTORIA DE ATHENA SWENTZELL STEEN</td>
<td>7</td>
</tr>
<tr>
<td>LA HISTORIA DE BILL STEEN</td>
<td>7</td>
</tr>
<tr>
<td>LA HISTORIA DE DAVID BAINBRIDGE</td>
<td>8</td>
</tr>
<tr>
<td>LA HISTORIA DE DAVID EISENBERG</td>
<td>9</td>
</tr>
<tr>
<td>INTRODUCCIÓN</td>
<td>10</td>
</tr>
<tr>
<td>CONVERSIÓN DE MEDIDAS</td>
<td>12</td>
</tr>
<tr>
<td>CAPÍTULO 1: BREVE HISTORIA</td>
<td>13</td>
</tr>
<tr>
<td>LA ESCENA INTERNACIONAL</td>
<td>13</td>
</tr>
<tr>
<td>CAPÍTULO 2: BENEFICIOS DE LA CONSTRUCCIÓN CON FARDOS DE PAJA</td>
<td>16</td>
</tr>
<tr>
<td>BELLEZA Y COMODIDAD</td>
<td>16</td>
</tr>
<tr>
<td>FACILIDAD DE CONSTRUCCIÓN</td>
<td>16</td>
</tr>
<tr>
<td>EFICACIA DE LA ENERGÍA</td>
<td>16</td>
</tr>
<tr>
<td>BENEFICIOS MEDIOAMBIENTALES</td>
<td>17</td>
</tr>
<tr>
<td>SOSTENIBILIDAD</td>
<td>18</td>
</tr>
<tr>
<td>PRUEBAS ESTRUCTURALES</td>
<td>18</td>
</tr>
<tr>
<td>RESISTENCIA SÍSMICA</td>
<td>19</td>
</tr>
<tr>
<td>ASEQUIBILIDAD</td>
<td>19</td>
</tr>
<tr>
<td>CAPÍTULO 3: PREOCUPACIONES COMUNES</td>
<td>20</td>
</tr>
<tr>
<td>SEGURIDAD CONTRA EL FUEGO</td>
<td>20</td>
</tr>
<tr>
<td>HUMEDAD</td>
<td>21</td>
</tr>
<tr>
<td>TERMITAS Y PLAGAS, ALERGIAS Y OLORES</td>
<td>22</td>
</tr>
<tr>
<td>CÓDIGOS DE CONSTRUCCIÓN</td>
<td>22</td>
</tr>
<tr>
<td>SEGURO Y FINANCIACIÓN</td>
<td>23</td>
</tr>
<tr>
<td>CAPÍTULO 4: TRABAJAR CON FARDOS DE PAJA</td>
<td>24</td>
</tr>
<tr>
<td>EMBALAR</td>
<td>24</td>
</tr>
<tr>
<td>CONTENIDO DE HUMEDAD</td>
<td>26</td>
</tr>
<tr>
<td>CARACTERÍSTICAS DE LOS FARDOS</td>
<td>27</td>
</tr>
<tr>
<td>ALMACENAJE DE LOS FARDOS</td>
<td>28</td>
</tr>
<tr>
<td>MANIPULACIÓN DE FARDOS DE PAJA</td>
<td>28</td>
</tr>
<tr>
<td>MODIFICAR FARDOS</td>
<td>28</td>
</tr>
<tr>
<td>CAPÍTULO 5: MUROS DE FARDOS</td>
<td>31</td>
</tr>
<tr>
<td>MUROS DE CARGA DE FARDOS DE PAJA Y PLACAS DE TEJADO</td>
<td>32</td>
</tr>
<tr>
<td>CÓMO ATAR LA PLACA DE TEJADO</td>
<td>34</td>
</tr>
<tr>
<td>APILANDO FARDOS</td>
<td>38</td>
</tr>
<tr>
<td>PUERTAS Y VENTANAS</td>
<td>40</td>
</tr>
<tr>
<td>CLAVAR LOS FARDOS</td>
<td>40</td>
</tr>
<tr>
<td>MATERIALES ALTERNATIVOS DE CLAVADO</td>
<td>41</td>
</tr>
<tr>
<td>PLACAS DE TEJADO</td>
<td>41</td>
</tr>
</tbody>
</table>
COLUMNAS DE MADERA .. 41
COLOCACIÓN Y PRENSADO .. 42
FARDOS CON MORTERO .. 42
FARDOS DE RELLENO .. 43
ESTRUCTURAS Normalmente USADAS CON FARDOS DE RELLENO 43
POSTES Y VIGAS MODIFICADAS .. 43
TENSAR LOS MUROS .. 44
MARCOS DE METAL ... 44
BLOQUES DE CEMENTO O COLUMNAS DE ARGAMASA ... 44
LA ALTERNATIVA DE LA MADERA PRENSADA O LOS BLOQUES DE ESPUMA AISLANTE ... 45
SISTEMAS HÍBRIDOS DE MITRO ... 45
RETROFITS ... 45
VARIAS PLANTAS .. 45
SÓTANOS ... 46
CONSTRUCCIONES DE PAJA Y ARCILLA .. 46

CAPÍTULO 6: VENTANAS Y PUERTAS .. 47
MUROS DE CARGA DE FARDOS ... 47
DINTELES .. 48
PAREDES CON RELLENO DE FARDOS .. 51
LINEAS GENERALES .. 51

CAPÍTULO 7: CIMIENTOS ... 52
DETALLES DE LOS CIMIENTOS PARA ESTRUCTURAS DE FARDOS 54
CIMIENTOS DE HORMIGÓN .. 55
MUROS DE CONTENCIÓN DE FARDOS DE PAJA .. 56
CIMIENTOS DE ZANJA DE ESCOMBROS ... 56
PIES DE MADERA TRATADOS A PRESIÓN .. 57
CIMIENTOS DE PIEDRA ... 58
CIMIENTOS DE POSTE O Pilar ... 58
OTRAS POSIBILIDADES .. 58

CAPÍTULO 8: TEJADOS .. 60
TEJADO A CUATRO AGUAS ... 61
TEJADO PIRAMIDAL .. 62
TEJADO A DOS AGUAS (GABLE ROOF) .. 62
TEJADO A UN AGUA (SHED ROOF) .. 63
TEJADO CLERESTORIO ... 64
TEJADOS PLANOS Y ANTEPECHOS .. 65
TEJADO VIVO ... 66
IMPERMEABILIZACIÓN ... 67
ACABADO DEL TEJADO .. 67
BÓVEDAS Y CÚPULAS .. 68
TEJADOS DE PAJA .. 69
ENTRAMADOS DE BAMBÚ ... 69
PREFACIO

LA HISTORIA DE ATHENA SWENTZELL STEEN

Crecí construyendo. Siempre había algo que hacer, un horno para pan, una pared de adobe o una habitación extra para mis abuelos. Como el resto del pueblo, la casa de mi abuela siempre estaba en continuas renovaciones que no sólo se hacían en beneficio de la familia sino que repercutían en toda la comunidad. Ese era el mundo de mi madre. Un mundo que me enseñó a construir en compañía de toda la comunidad, felizmente unidos y eso era tan importante como el acabado final del trabajo. Los más pequeños aprendían jugando, cuando estaban con los mayores.

Por otra parte, mi padre tenía conocimientos de la construcción más en la teoría que en la práctica. Se pasaba mucho tiempo analizando la construcción en su ordenador. Le gustaban las cosas simples y fáciles.

Mi primer marido y yo estábamos pensando en un sitio donde vivir, tenía que ser rápido, fácil, caliente y barato. Hablamos con mi padre del tema. Tan pronto como él mencionó la paja, supimos que era la respuesta. Entusiasmados, empezamos a construir. El tejado se posaba en los fardos de paja, aunque había postes de sujeción en cada esquina. La parte sur estaba enmarcada con doble panel de plástico y bidones de cincuenta y cinco galones como aislante.

Ocho años más tarde, recibí una llamada de teléfono de Bill Steen solicitando fotografiar mi pequeña casa de fardos. Entonces descubrí que, en la historia del Estado de Nebraska, la paja había sido usada en la construcción. En la actualidad son muchos los que hacen uso de ella para levantar sus viviendas.

Bill y yo nos casamos poco tiempo después de conocernos, y nuestra inspiración por trabajar con la paja creció. Hemos tenido la oportunidad de intervenir en distintos proyectos y de conocer el enorme potencial que tiene la paja en la construcción. Cuando ahora miro las paredes de paja convertirse, rápidamente, en espacio funcional y altamente aislado, todo el proceso me parece más un juego que un trabajo.

LA HISTORIA DE BILL STEEN

Parece que he pasado toda mi vida corriendo tras aquellas cosas que han dilatado el límite de mi imaginación. La idea de construir con paja ha encajado muy bien en mi imaginación y criterio, y parece que lo mismo opinan casi todas las personas con las que he hablado. El pensamiento de construir con
fardos de paja hace pensar en imágenes de invasión de insectos, deterioro de la noche a la mañana, incendios, moho, putrefacción, en definitiva, un desastre total.

Uno de los aspectos más satisfactorios del proyecto ha sido ver a gentes que parecían haber hecho muy poco ejercicio físico en sus vidas, participar en el levantamiento de una pared de fardos de paja, y marcharse con la creencia de que también ellos podrían construir su propia casa.

Levantar paredes en grupo, que evoca el espíritu de comunidad asociado con los Amish y la antigua construcción de graneros, aporta una dimensión social a la construcción de una casa, y desde un punto de vista práctico, hace posible que se levanten las paredes de una casa de tamaño moderado en uno o dos días.

Construir con fardos de paja se ha convertido tanto en un proceso de construcción de comunidades como en una forma de construir edificios asequibles y respetuosos con el medio ambiente de una manera sensata y muy eficaz. La gente parece cambiar esencialmente cuando alcanzan la seguridad añadida que proporciona el saber que son capaces de proporcionarse su propio refugio. Cuando una comunidad de personas posee esa seguridad y se une para ayudar a crear las casas de los otros, esto hace que el mundo sea un lugar mejor en el que vivir.

Es esta faceta de la construcción con fardos de paja la que me ha dado la mayor satisfacción y, al mismo tiempo, la mayor esperanza. El proceso de construir con fardos incluye la posibilidad de hacer un profundo cambio en el tejido de las comunidades humanas de todo el mundo. De hecho, esta visión no es únicamente una cuestión de fardos de paja; las cuestiones que intentamos presentar en este libro son básicas: ¿cómo construimos? y ¿cómo ocurre ese proceso en relación con la comunidad y la vida a nuestro alrededor? Sucede que los fardos de paja son un material que ha inspirado que mucha gente considere el proceso de construcción desde otra perspectiva.

LA HISTORIA DE DAVID BAINBRIDGE

Mis exploraciones con edificios solares continuó mientras investigaba los beneficios del superaislamiento. Viajé mucho para hablar con constructores y propietarios de casas superaisladas y descubrí que el mayor problema con la mayoría de esas casas era la complejidad añadida y el alto coste de construir paredes con unas características que les proporcionasen un factor de aislamiento de R-40-60.

Me sorprendió descubrir que la paja quemada por los granjeros creaba más contaminación (específicamente, monóxido de carbono) ¡qué todos los aparatos eléctricos de California!

Fue entonces cuando todas las piezas encajaron. ¿Por qué no utilizar ese material para conseguir edificios de bajo coste y un alto aislamiento?
LA HISTORIA DE DAVID EISENBERG

El primer escalón en un trabajo con paja es similar a preparar en un jardín la tierra para sembrar. Lo más laborioso es preparar la tierra que después nos proporcionará la alegría de recoger la cosecha.

Durante los últimos tres años, la puerta a la construcción de paja ha estado más abierta en zonas rurales y menos en las urbanas, donde son más estrictos en cuanto a códigos de construcción. Aunque la situación está cambiando rápidamente, aún hay mucho trabajo por hacer para que las puertas se abran para todos aquellos que necesitan una vivienda asequible, duradera, segura, saludable y, por supuesto, bonita.

Yo he elegido encauzar todos mis esfuerzos en lograr abrir esas puertas para todos. Hemos creado el Bale Research Advisory Network (BRAN) (red consultiva de investigación de fardos) para coordinar y maximizar la eficacia de este trabajo.

Tengo un interés personal en el desarrollo de códigos alternativos de construcción, hasta ahora limitados a edificios construidos por sus propietarios en zonas rurales de baja densidad en unos pocos lugares por todo el país. Estos códigos alternativos se suelen estructurar para inspeccionar asuntos básicos de salud y seguridad -asegurarse de que el edificio no se derrumbará encima de nadie, que la instalación de cables es segura (especialmente si está conectada a una red de energía), y que los sistemas de alcantarillado no contamina los suministros de agua locales. Si exceptuamos eso, se permite que la gente construya lo que quiera.

Los beneficios potenciales de la construcción con fardos de paja son probablemente mayores en los lugares menos desarrollados del mundo, por la gran necesidad de un refugio bastante bueno y porque la paja se adapta fácilmente a los estilos de construcción vernáculos y a los materiales sencillos. Es un campo nuevo y excitante, lleno de posibilidades.
INTRODUCCIÓN

La idea de construir algo con paja puede parecer risible, pero culturas tradicionales de todo el mundo han reconocido hace mucho tiempo el valor de la paja, la hierba y la caña como materiales de construcción, y los han usado con efectividad combinándolos con tierra y madera para crear refugio a lo largo de miles de años.

Este libro trata de la tradición de construir con materiales embalados. Tradición que ha continuado hasta nuestros días y que, en la actualidad, se está extendiendo por todo el mundo.

Los fardos, ya sean de heno o paja, tienen muchas posibilidades y cualidades. Son recomendados como excelentes materiales de construcción pero tienen que ser protegidos de las humedades y no ser usados de forma que se pasen por alto sus características estructurales. Pueden ser empleados para crear estructuras que sean duraderas, seguras y firmes. Son de gran rendimiento de energía, seguros para el medio ambiente, fáciles para trabajar, baratos y estéticos.

Como puede verse por las muchas fotografías que ilustran este libro, las casas de paja pueden ser tradicionales o innovadoras, pequeñas o grandes, luminosas y espaciosas o acogedoras e íntimas.

La mayoría de la gente del mundo vive en casas que están pobremente construidas y no son cómodas la mayor parte del año. Mantener un confort adecuado en esas casas resulta muy caro y, a veces,
perjudicial para el medio ambiente. En cualquier sitio donde se pueda disponer de cebada, avena, trigo o arroz, construir con fardos puede resultar económico y respetuoso con el medio ambiente.

Hasta ahora, los fardos han sido utilizados con métodos de construcción que fueron diseñados para otros materiales. Diseños que sepan aprovechar las características únicas de los fardos acaban de empezar a ser explorados.
CONVERSIÓN DE MEDIDAS

NOTA: 1 yarda equivale a 91,44 cm.
1 pie equivale a 12 pulgadas (30,58 cm.)
1 pulgada equivale a 2,54 cm.
1 yarda equivale a 36 pulgadas.

1 pulgada cuadrada 6,45 centímetros cuadrados
1 pie cuadrado 929,03 centímetros cuadrados (144 pulgadas cuadradas)
1 yarda cuadrada 0,836 metros cuadrados (9 pies cuadrados)
1 acre 40,47 áreas (4.840 yardas cuadras)
1 galón 4,546 litros (U.K.)- En EE.UU., 3,785 litros
1 libra 453,6 gramos
CAPÍTULO 1: BREVE HISTORIA

En algunos casos, las familias que necesitaban un lugar para vivir de forma inmediata consideraban los fardos como la forma más rápida de conseguir tener un techo sobre sus cabezas. Muchas de esas estructuras fueron en principio consideradas temporales, pero cuando descubrieron que eran duraderas y cómodas en los inviernos y veranos de temperaturas extremas en Nebraska, fueron pronto enlucidas y adoptadas como residencia permanente.

En 1988, en un informe que resumía el Curso de Diseño de Permacultura de 1987 se incluía un artículo sobre construcción con fardos de paja de Dave Bainbridge que influyó a mucha gente.

A principios de los 90, tuvo lugar un gran aumento de artículos de periódico, cobertura televisiva y talleres de construcción enfocados en la construcción con fardos de paja, así como el primer visto bueno a códigos de construcción para un número limitado de edificios de fardos de paja sin carga. La primera casa de fardos de paja permitida fue también la primera asegurada y financiada por un banco. Construida en 1991 en Tesuque, Nuevo México, por Virginia Carabelli, que fue su propia contratista, esta casa de estilo Santa Fe marcó el comienzo de una nueva era para las casas de fardos de paja.

En septiembre de 1993, tuvo lugar en Arthur, Nebraska, la primera conferencia sobre edificios de fardos de paja, “Raíces y Renacimiento”, a la que asistieron cincuenta arquitectos, constructores, diseñadores y entusiastas. El último día de la conferencia, miembros del grupo de trabajo Códigos, Investigación y Pruebas esbozaron una propuesta para crear un National Straw Bale Research Advisory Network para facilitar la comunicación entre importantes representantes nacionales de la construcción con fardos de paja y para asegurar que las pruebas, eficaces y no duplicadas, se llevaran a cabo con directivas comunes de investigación, perspectivas nacionales y el mejor uso de los recursos de ingeniería.

En octubre del 93, Judy Knox y Matts Myhrman empezaron a construir la primera casa de fardos de paja de carga a la que se le concedía un permiso de obra.

LA ESCENA INTERNACIONAL

A principios de los 80, estructuras con fardos de paja empezaron a aparecer en Quebec, Canadá. François Tanguay se inspiró en el artículo de Roger Welsch ‘Heno embalado” para construir un sistema de tejado con paja. François decidió que, ya que estaba construyendo un tejado de paja, igualmente podía construir las paredes de paja. En 1981, construyó una casa de postes y vigas con relleno de fardos de paja al sudeste de Quebec, cerca de la frontera con Estados Unidos.

En 1982, la Canada Mortgage and Housing Corporation proporcionó fondos a través del programa de Housing Technology Incentives (Incentivos para Tecnología de Vivienda) para demostrar las aplicaciones prácticas de un sistema de fardos de paja y mortero como muro de carga para uso en
construcciones residenciales. Louis Gagné de Huli, Quebec, desarrollo un sistema de paredes llamado sistema de matriz de paja y mortero para usar en el programa, en el cual un muro de muestra compuesto de fardos apilados en columnas con ensambladuras de mortero fuese probado por consultores independientes de acuerdo con procedimientos reconocidos de resistencia al calor, carga y penetración de humedad.

A mediados de los 80, François Tanguay y Michel Nergeron seguían trabajando con estructuras de fardos de paja en Quebec. Además, Michel enfocaba su trabajo al desarrollo de un bloque de hormigón que usase fardos de paja empotrados y no requiriese refuerzo de acero. Junto a Clode Deguise formaron un grupo dedicado a investigar materiales y técnicas apropiadas a la construcción ecológica. Una parte significativa de su trabajo se ha enfocado a la construcción con fardos de paja, a la que han hecho aportaciones únicas tales como tejados vivos hechos de fardos y los bloques de fardos de paja de Michel.

En Canadá, en 1993, Kim Thompson, de Nova Scotia, y un grupo de amigos construyeron un edificio usando muros de carga de siete fardos de alto en el primer piso y de tres en el segundo, con un techo de catedral. El edificio se apoya sobre una plataforma de madera sostenida por largos postes de teléfonos hundidos 4 pies (1,5 m) en el suelo. Los fardos de paja fueron usados como aislante entre las vigas del suelo.

Las estructuras construidas por Kim Thompson y Mary Biggs son significativas porque son edificios de carga construidos en áreas sujetas a pesadas cargas de nieve y humedad relativamente alta. Los fardos se comprimen bajo una pesada carga de nieve, y, sin embargo, tienden a volver a su tamaño y dimensión original al derretirse la nieve y desaparecer la carga.

En 1993, Save the Children invitó al programa Farmer lo Farmer (de granjero a granjero) de la universidad de Arizona, al barrio de Aves de Castillo, en Ciudad Obregon. A Aves de Castillo le faltaba una electricidad adecuada, agua potable, transporte, tratamiento de alcantarillado y viviendas. Está rodeado por tres lados por una ancha región agrícola, donde se cultiva trigo y soja. Después de la cosecha, los granjeros queman los campos para deshacerse de la paja sobrante, rodeando a la comunidad de grandes nubes de humo durante un mes cada primavera. Durante ese tiempo, los residentes de Aves de Castillo sufren problemas respiratorios e irritación ocular.

Junto a un grupo de mujeres del barrio, llamado Mujeres Activas de Aves de Castillo, Thoric Cederstróm, Dan Dorsey y otros representantes del programa Farmer lo Farmer llevaron a cabo un taller de fardos de paja de cinco días para construir un pequeño edificio de carga con tejado de cobertizo como lugar de reunión del grupo de mujeres. El edificio fue principalmente construido por más de un centenar de mujeres que participaron en el evento, y se llama La Casa Ecológica de Aves de Castillo.

Al mismo tiempo, el grupo organizó un taller para desarrollar objetivos específicos para mejorar la calidad de vida de la comunidad y desarrollar un estilo de vida sostenible a largo plazo. Los objetivos
incluían proporcionar un refugio de bajo coste, reducir la polución, proporcionar viviendas de energía eficiente, animar a usar técnicas locales y desarrollar nuevas técnicas, y crear un mercado para los fardos de paja.

Este taller llamó la atención del estado de Sonora que financió quince viviendas de fardos de paja durante los años 94-95, la primera de las cuales ya ha sido construida por dos hermanos que redujeron costes usando un tejado de hormigón en lugar de madera y cajas de cartón de paja entre las vigas del techo como aislante.

En Europa, a principios de los 90, Tapani Marjamaa construyó la primera estructura de fardos de paja en Finlandia sin tener conocimiento de que edificios similares estaban siendo construidos en otros lugares. Continúa su labor dirigiendo pruebas e investigaciones para conseguir un código nacional para edificios de fardos de paja.

El americano Scott Pittman y el fundador australiano de la Permacultura Bill Mollison llevaron a cabo un taller de fardos de paja en la granja colectiva de Myak en los montes Urales cerca de Chelyabinsk, en Rusia, en 1994. La casa que construyeron tenía una estructura de armazón de madera y fue construida en el mismo sitio con herramientas de mano, usando relleno de fardos para las paredes.

Los edificios de fardos de paja van en aumento en todo el mundo. El futuro de la construcción con fardos de paja está siendo escrito ahora.
CAPÍTULO 2: BENEFICIOS DE LA CONSTRUCCIÓN CON FARDOS DE PAJA

La paja es un producto que crece en un periodo corto de tiempo, es biodegradable y, con su uso, se puede ayudar a aliviar múltiples problemas del medio ambiente. Los fardos de paja son fáciles de modificar, flexibles para ser usados en diferentes formas, sólidos, duraderos y fáciles de conservar en buen estado. No requieren herramientas caras ni complicadas y tampoco personal especializado y son fáciles de conseguir en cualquier parte del mundo. Cuando la paja es combinada con otros materiales de similares características, se consiguen edificios asequibles en todos los aspectos. Naturales y bellos.

BELLEZA Y COMODIDAD

La densidad y sutiles curvas de las paredes construidas con fardos de paja tienen una especial personalidad y belleza. Combinado con su alto grado de aislamiento y ventilación, estas paredes crean una sensación de confort que no tienen las delgadas paredes levantadas con materiales modernos. Las paredes de fardos de paja son similares en apariencia a los viejos muros de gruesa piedra y adobe que recuerdan a las casas de campo de Europa y las villas del Mediterráneo.

En las Grandes Llanuras preferían casas de fardos porque eran muy silenciosas y podían aisl ar el ulular de los vientos del norte que pueden atormentar a las personas en las abiertas Llanuras.

FACILIDAD DE CONSTRUCCIÓN

En Estados Unidos, se ha demostrado que el método básico de construcción con fardos de paja se puede aprender en dos días de taller. Una de las bellezas de este sistema es que todo el mundo puede participar en la construcción de una casa, incluidas mujeres y niños. La reunión de gente para ayudarse unos a otros a construir a menudo genera un gran entusiasmo. Levantar paredes en grupo facilita proyectos basados en la comunidad que de otra manera podrían no llevarse a cabo.

EFICACIA DE LA ENERGÍA

El aislamiento se mide por el valor de resistencia (valor-R) al flujo de calor. El valor-R de la madera es de 1 por pulgada, el del ladrillo es de 0.2, el de la fibra de vidrio es de 3.0. Cuanto más alto sea el valor-R mayor será el aislamiento. Los fardos de paja son térmicamente eficaces y conservan la energía, con valores-R significativamente mejores que los de las construcciones convencionales, dependiendo del tipo de paja y el grosor de la pared. Un fardo de paja de tres cuerdas situado en horizontal (de 23 pulgadas de ancho) tiene un valor-R de R-54.7, y situado en vertical (de 16 pulgadas de ancho) tiene un valor-R de R-49.5. Los fardos de paja de dos cuerdas situados en horizontal tienen un valor-R de R-42.8, y situado
verticalmente tiene un R-32. Además, la masa obtenida al enlucir la pared de fardos puede ayudar a incrementar el rendimiento térmico del sistema de paredes.

Las paredes de fardos de paja permiten instalar un sistema de refrigeración y calefacción menor que en las viviendas convencionales por el aumento de aislamiento.

Para sacar un mayor rendimiento de las altamente eficaces paredes de un edificio de fardos, la construcción debería incluir un ático o tejado bien aislado, un buen perímetro de cimientos aislado, ventanas y puertas aisladas, un sellado hermético para minimizar las corrientes, y una ventilación óptima que se consigue enyesando y pintando las paredes con un acabado transpirable.

BENEFICIOS MEDIOAMBIENTALES

La construcción con fardos de paja puede ofrecer beneficios en regiones donde la paja es un producto de deshecho. Casi un millón de toneladas de paja de arroz se quema cada otoño en California, formándose una cortina de humo que dura semanas, La quema anual de paja en California produce más monóxido de carbono que todas las plantas generadoras de electricidad del estado.

Un millón de toneladas de hierba se queman cada año en el valle de Willamette, en Oregón, creando polución que daña a los ojos y es un riesgo para la salud. En 1988, hubo un accidente en la autopista, debido al humo de la quema en los campos, que causó siete muertos y 37 heridos. El Departamento de Calidad del Medio Ambiente ha declarado que ese humo es cancerígeno y contiene pequeñas partículas que irritan los pulmones.

Grandes cantidades de paja se queman también en otras áreas. Estados Unidos produce cada año cerca de doscientos millones de toneladas de deshecho de paja. Cantidades cada vez más elevadas se queman también en Europa y México. El uso de paja como combustible doméstico ha sido reducido en la zona este de China, donde la alta repoblación forestal ha permitido a los granjeros empezar a usar madera en su lugar. Eso podría hacer que la paja estuviese disponible para la construcción.

La construcción con fardos de paja podría ser útil para controlar el deterioro atmosférico y el calentamiento del globo. Una gran reducción de la cantidad de paja quemada recortaría la producción de monóxido de carbono y óxido nitroso en muchos miles de toneladas al año. Al quitar la paja de arroz de los campos húmedos para usarla en la construcción de edificios, se reduciría substancialmente la emisión de metano procedente de los microbios de la descomposición, la segunda causa mayor del calentamiento del globo. La paja de deshecho podría ser embalada y usada en edificios. Se produciría un descenso significativo en la devastación de áreas de madera de construcción si se construyesen casas de fardos de paja.
SOSTENIBILIDAD

En contraste con la madera usada para construir, la paja puede crecer en menos de un año en un sistema de producción completamente sostenible. Si la cosecha de paja es recogida del mismo campo todos los años puede que se necesite abonar la tierra o alternar con otro tipo de cultivo.

También se puede cultivar paja en tierras salinas o de poca calidad. Las posibilidades de sostenibilidad de cualquier producto aumentan si la energía necesaria para manufacturarlos o manipularlos se mantiene al mínimo.

PRUEBAS ESTRUCTURALES

A mediados de los 80, la *Canada Mortgage and Housing Corporation* fue la primera en patrocinar las pruebas de resistencia de las construcciones con fardos de paja enlucidas, y con un sistema de paredes de fardos y cemento. Las paredes, en esas pruebas, tenían argamasa en las juntas entre los fardos y yeso en ambos lados.

Pruebas iniciales llevadas a cabo por Ghailene Bou-Mi demostraron que paredes de fardos de tres cuerdas sin enlucido eran fuertes y resistían bien cargas laterales y verticales. La primera parte de su estudio midió la fuerza de compresión de fardos individuales, llegando a resultados impresionantes cuando fardos de tres cuerdas eran probados en situación horizontal (23 pulgadas de ancho por 46 pulgadas de largo). La prensa hidráulica usada para la prueba notó un cambio en la resistencia de los fardos a unas 72.600 libras por fardo, o 10.000 libras por pie cuadrado. Se consideró que ese era el punto de ruptura, aunque no se rompió ninguna de las cuerdas del fardo. La disminución de los fardos en el punto de ruptura era del 50% de su tamaño original, y los fardos recuperaban la mayor parte de su tamaño original después de retirar el peso. La capacidad de una material para actuar de esta manera se llama deformación elástica, o simplemente, la capacidad de soportar una carga durante un corto espacio de tiempo y recobrarse sin deformación permanente.
Los resultados obtenidos de las pruebas con fardos de paja de tres cuerdas situados en vertical (16 pulgadas de ancho) fueron menos impresionantes. Los fardos demostraron mucha menos resistencia en esa posición.

Los resultados parecen indicar que los fardos usados en posición vertical son mucho más apropiados como relleno en estructuras no de carga o pequeñas estructuras de carga. Usados en vertical, los fardos proporcionan un área de pared mayor utilizando el mismo número de fardos y ocupan menos espacio del suelo. También tienen un valor de aislamiento más grande por pulgada en esa orientación.

RESISTENCIA SÍSMICA

Parece que la construcción con fardos de paja será de especial valor en lugares donde los terremotos son frecuentes. Los fardos de paja pueden ser fácilmente reforzados con madera, bambú o pernos de metal.

Lo natural de la paja, su flexibilidad y resistencia, la hace ideal para el diseño sísmico siempre que las conexiones entre el sistema de paredes de fardos, el tejado y los cimientos sean adecuadas. Las paredes de fardos pueden absorber mucha de la fuerza del terremoto en vez de transferirla al tejado como en las estructuras construidas de forma convencional. Una capa de yeso (reforzada con alambre) añade resistencia a esos edificios.

ASEQUIBILIDAD

El coste de la construcción varía según la región, el clima y el lugar en la región, la contribución del trabajo del constructor-propietario, y los códigos y permisos que se piden.

Otra variable que influye en el coste de las paredes de fardos de paja es el precio pagado por fardo. Es más barata si se compra cerca de donde se va a construir, y, si deshacerse de la paja es un problema en esa área, podría obtenerse gratis.

Usar materiales naturales locales, como barro, piedra y madera que, a menudo pueden ser gratuitos, sirve de ahorro. Así como construir un edificio sencillo, con pocos cambios en las alturas en suelos y tejados, esquinas extra o detalles especiales.
CAPÍTULO 3: PREOCUPACIONES COMUNES

SEGURIDAD CONTRA EL FUEGO

A mediados de los años 80, el Concilio Nacional de Investigación de Canadá llevó a cabo pruebas de la seguridad contra el fuego de los fardos de paja y descubrió que son más resistentes al fuego que la mayoría de materiales de construcción convencionales. Los fardos pasaron la prueba de resistencia al fuego a pequeña escala con un aumento máximo de temperatura de sólo 1100° Farenheit en un periodo de cuatro horas. La superficie de yeso soportó temperaturas de hasta 1.850° Farenheit durante dos horas antes de que apareciera una pequeña grieta.

En 1993, pruebas de resistencia al fuego llevadas a cabo en el estado de Nuevo México mostraron resultados igualmente positivos. Se hicieron dos pruebas, una en una pared de fardos de paja sin yeso y la segunda en una pared de fardo de paja que había sido enyesada por la parte calentada y estucada por la parte exterior. La primera prueba realizada en la sección de pared sin enyesar cumplió con los requisitos básicos de exponer la parte interior del panel a 1.000° Farenheit durante cinco minutos y aumentar hasta 1.550° F después de treinta minutos. El aumento de temperatura en el lado no calentado del panel fue de 1.97° F. Fueron necesarios treinta y cuatro minutos para que el fuego llegase al centro de la pared de prueba, no a través del centro del fardo sino a una junta donde se unían los fardos. Cuando el panel se quemó hasta la junta, el resto de los fardos sólo estaban medio chamuscados, unas 9 pulgadas del grosor de 18 pulgadas de los fardos probados.

En la segunda prueba, las temperaturas del horno alcanzaron 1.942° F durante un periodo de prueba de dos horas. Las llamas y los gases calientes no penetraron en el muro de prueba, y el aumento de temperatura en la parte no calentada del panel fue de unos 100° F. Hubo algunas grietas en el yeso en la parte calentada del panel, y donde ocurrió esto se chamuscaron los fardos hasta una profundidad de 2 pulgadas. Las pruebas de seguridad contra el fuego de Canadá y Nuevo México muestran claramente la excepcional resistencia al fuego de los fardos de paja enyesados.

Las casas de fardos de paja más viejas de Nebraska, como otras casas rurales, algunas veces ardían cuando eran alcanzadas por un rayo o por un intenso fuego de chimenea. Esos fuegos generalmente se desarrollaban desde el tejado o techo pared abajo. Un retardador de fuego en la parte alta de la pared ayudará a prevenir este tipo de fuego. Edificios de fardos enyesados con tejados de metal, (soffits) y contraventanas resistentes al fuego podrían ser una elección inteligente en áreas donde haya amenaza de fuegos de maleza y hierba.

Para conseguir permiso para edificar en los Estados Unidos, se puede poner nuevo nombre a un muro de fardos de paja como un muro antifuego de hormigón o yeso reforzado de alambre de un grosor de
1 a 3 pulgadas con aislamiento de paja. Otros constructores han enyesado paredes de fardos con una ligera mezcla de arcilla que incluye bórrax. Además de ser un retardador del fuego, el bórrax es también un fungicida y repelente de roedores. Tom Luecke de Boulder, Colorado, usó un calentador de keroseno salamander situado contra un lado de un bidón de cincuenta y cinco galones para calentar la mezcla. Acido bórico (1 parte) puede ser añadido al Bórax (2 partes) para ayudar a neutralizar su naturaleza altamente alcalina y alcanzar un pH de 6 a 8. Esto minimizará su efecto corrosivo.

La seguridad contra incendios en una casa de fardos de paja también requiere el mismo cuidado con códigos y prácticas de cableado que en una casa convencional. Si ocurriera un incendio en una casa de fardos, sería preferible usar un extintor en vez de agua, que podría ocasionar más daños de humedad.

HUMEDAD

Se ha demostrado que los edificios de fardos pueden sobrevivir con éxito a climas húmedos. Sin embargo, es muy importante proteger los fardos de la exposición directa a la humedad. Los daños ocasionados por el agua son el mayor peligro potencial para una estructura de fardos, y los edificios deberían ser detallados para proporcionar la protección necesaria. El daño causado por el agua puede ocasionar problemas que van desde la completa desintegración de los fardos a problemas con el mantillo y el mocho.

Las partes más vulnerables de una pared de fardos de paja son la de arriba y la de abajo. La estructura del tejado debería ser colocada tan rápido como fuese posible después de que las paredes hayan sido apiladas. Si hubiese algún retraso, la parte de arriba de las paredes deberá ser cubierta. Si entra humedad en la parte de arriba de los fardos y penetra hacia la parte baja de la pared, existe la posibilidad de que los fardos empiecen a pudrirse antes de secarse. Proteger la parte baja de los fardos es igualmente importante. Los fardos deberían ser adecuadamente elevados de 6 a 8 pulgadas sobre el nivel del suelo. Una barrera contra la humedad deberá ser situada entre la parte baja de los fardos y el rodapié para evitar que la humedad entre en el fardo. También es importante proteger la parte baja de los muros de fardos de paja, que están expuestos a salpicaduras o exceso de agua de lluvia, con una barrera anti-humedad debajo del estuco.

Los lados de la pared de fardos no presentan el mismo problema que las partes alta y baja. Los edificios que se dejan sin enyesar durante cierto tiempo, o incluso indefinidamente, prácticamente no han mostrado deterioro, incluso cuando han sido expuestos a la lluvia y a la nieve. Lo que parece ocurrir es que sólo la superficie exterior del fardo se moja, y se seca rápidamente cuando vuelve el tiempo más seco. Ha habido problemas cuando las paredes de fardo se mojaron y permanecieron así porque había algo apoyado contra ellas, atrapando el agua e impidiendo que los fardos se secasen.
Un estudio que comenzó en 1983, dirigido por la *Canada Housing and Mortgage Corporation*, mostró que los niveles de humedad en las paredes de fardos permanecen bajos a pesar de las fluctuaciones de humedad en el ambiente alrededor de las paredes. Cables de prueba instalados en las paredes, incluido el cuarto de baño, mostraron una humedad relativa media del 13%. Las pruebas también mostraron que los fardos continuaron secándose después de que se construyera y enyesara la pared.

Los estudios canadienses descubrieron que el contenido de humedad de los fardos puestos a prueba se mantenía lo suficientemente bajo como para ofrecer una buena resistencia térmica (la resistencia de un cuerpo a la corriente de calor) sin usar una barrera de vapor. En el caso de un frigorífico de fardos de paja, que fue construido usando una barrera de vapor en la pared interior sólo, la paja se deterioró en un año debido a la alta diferencia de temperaturas y la condensación resultante que ocurrió entre los fardos de paja y la barrera.

Una pared de fardos con la máxima respirabilidad puede ser el mejor seguro contra problemas potenciales con la humedad.

TERMITAS Y PLAGAS, ALERGIAS Y OLORES

Una de las preocupaciones más comunes respecto a edificios de fardos es la amenaza de plagas tales como roedores e insectos.

Los fardos de paja proporcionan menos espacios y refugios para plagas que la estructura de madera convencional. Si se aplica y mantiene una buena capa de yeso, el acceso, incluso para pequeños bichos, se reduce considerablemente. Las paredes que se dejan sin enyesar son otra cuestión. La experiencia ha demostrado que a los abejorros les gusta hacer sus nidos en la paja, y parece probable que no estarán solos.

Precauciones como escudos contra termitas, barreras de arena, barreras de vapor aplicadas especialmente, tierra *diatomaceous*, o borato pueden usarse para proporcionar una protección añadida contra las termitas en las mismas áreas donde son un problema en las viviendas convencionales.

La paja limpia y brillante tiene poco mantillo o potencial alérgico. Los asmáticos han tenido problemas con paja con mantillo, que debería ser evitado.

CÓDIGOS DE CONSTRUCCIÓN

Los edificios de fardos de paja pueden encontrarse con los mismos problemas con los códigos de construcción que cualquier otro método de construcción demostrado y ecológicamente sólido, como tierra apisonada y adobe. A no ser que ya haya habido un edificio de fardos de paja aprobado por oficiales locales de construcción, el proceso para obtener un permiso puede ser un largo y laborioso proceso de
diálogo, educación y planificación, que puede ser acortado por grandes dosis de paciencia, flexibilidad y buena comunicación.

Probablemente, la forma más lógica de comenzar el proceso, especialmente en áreas donde no hay precedentes de un código de aprobación de fardos de paja, es aprender tanto como sea posible sobre construcciones de fardos de paja y establecer contacto con alguien que tenga un poco de experiencia construyendo con fardos. La lista de recursos al final de este libro contiene fuentes de información sobre fardos de paja y nombres de individuos capaces de proporcionar ayuda. Sin este tipo de antecedentes puede ser difícil saber qué método de construcción se ajusta mejor al edificio que se tiene en mente.

El paso siguiente es comenzar a discutir con los oficiales de construcción locales. Suele ser una buena idea proporcionar a los oficiales tanta información como sea posible respecto a precedentes históricos, ejemplos de edificios de fardos de paja construidos recientemente, y resultados de pruebas de fuego y de estructura, así como una idea clara y concisa de lo que se va a construir. Puede sugerirse que se pongan en contacto con uno de los oficiales de construcción pública de un estado o localidad donde se hayan concedido permisos de construcción con fardos de paja.

El permiso más fácil de conseguir para una estructura residencial o comercial es aquel en el cual los fardos se usan como relleno en combinación con algún tipo de soporte estructural tal como construcción de postes y vigas.

El proceso de presentar planos es normalmente directo, y requiere un plan, plano de los cimientos, plano del piso, plano de la estructura del tejado, altura de las paredes, y cualquier detalle significativo.

La mayor parte de las culturas indígenas han confiado más en la integridad de su pueblo que en un código formal para dictar estándares de construcción. Mientras los códigos proporcionan muchos beneficios y un margen de seguridad para el comprador desinformado y confiado, también transforman radicalmente el proceso de construcción en algo que implica a las familias y a las comunidades en un proceso dominado por el trabajo profesional, los altos costos, los materiales estandarizados y un nivel de complejidad a menudo innecesario.

SEGURO Y FINANCIACIÓN

Si el edificio de fardos de paja bajo construcción se ha asegurado un permiso de obra, y la persona propietaria está en posición de obtener seguro y financiación para una estructura similar construida con otros materiales, entonces, no suele haber problemas para obtener un seguro o financiación. A las compañías de seguros probablemente les preocupará la capacidad de una estructura de fardos para resistir al fuego. Los resultados de las pruebas de resistencia al fuego llevadas a cabo en Nuevo México pueden servir para aliviar sus preocupaciones.
CAPÍTULO 4: TRABAJAR CON FARDOS DE PAJA

La paja fue un importante recurso en las comunidades tradicionales y una forma de construcción de las paredes antes de la llegada de los modernos equipos de embalaje. Muchas variedades de paja han sido utilizadas para distintos aspectos de la edificación, la más utilizada siempre ha sido la que se ha producido en la zona. Arroz, trigo, centeno y lino (la paja de estos cereales) son particularmente apropiados para la construcción, aunque también se pueden utilizar otras como cebada, avena...

El arroz tiene un alto contenido de silicio, que lo hace muy resistente a las inclemencias del tiempo, pero también es más difícil o duro trabajar con él en la construcción. Muchos de estos tipos de paja han sido también utilizados en la construcción de tejados,

Muchas casas, escuelas y edificios comerciales de Nebraska fueron construidos con heno, pero la paja es mejor, es más fácil de secar y quitar las semillas.

EMBALAR

Es casi un arte. Si puedes elegir el origen de los fardos, todavía mejor, hacer que te los embalen para ti, podrás conseguir fardos más uniformes y de mayor calidad. Tan importante como hacer los fardos es la manera de recoger la paja y la cosecha. Por ejemplo, la recogida con cosechadora está más golpeada y es más corta. El mejor libro sobre este tema es *La cosecha del heno y del forraje* de la Compañía John Deere.

Hacer un fardo no es difícil, pero puede ser frustrante para los principiantes, es importante aprender de un experto cuánto tensar, cómo cortar, etc... A menudo, se necesitan medios fardos, se pueden cortar a mano o también se pueden mandar cortar a quien hace y vende los fardos. Algunos fabricantes de fardos los hacen pequeños, de hasta 12 pulgadas, ésto requiere más trabajo, por lo tanto, resultan caros.

Los fardos vienen atados con alambre de embalar o con ataduras de polipropileno (cuerdas). Se han construido estructuras con los dos tipos y parece que no hay diferencias estructurales entre ellos, excepto que el de cuerdas es más fácil de modificar, sólo requiere de un cuchillo o unas tijeras para cortar las cuerdas. Es más fácil y más seguro hacerlo con cuerdas que con alambres.

Lo mejor para la construcción es utilizar solamente fardos suficientemente compactos. Aunque la excesiva compresión reduce el aislamiento, poca tensión hace que los fardos sean tambaleantes y muy blandos. Una embaladora mecánica puede regular la compresión de los fardos (25 0-500 libras funcionan bien en una embaladora New Holland). Al comprar fardos es difícil conseguir la compresión requerida a no ser que lo negocies con la persona encargada de hacer los fardos. Un simple prueba del estado de New México para ver si sirve para las paredes que no sean de la estructura de la casa, es que tenga la suficiente compresión para mantenerse intactos cuando se elevan con una cuerda o alambre de embalar.
Los fardos se pueden comprar en almacenes de alimentación, centros ecuestres u organizaciones de granjeros.

Los fardos se dividen por tamaños. Los más comunes son el pequeño de dos cuerdas y el mediano de tres cuerdas. Además de estos fardos pequeños hay otros grandes, rectangulares y redondos que sólo se pueden mover con equipo especial.

Esos fardos grandes han sido utilizados para construir cobijos temporales para animales y aperos. Mientras que los fardos de dos y tres cuerdas se utilizan para la construcción de edificios residenciales y de servicio público. Cuando los fardos se hacen para transportarlos a grandes distancias es mejor que se utilicen los de tres cuerdas ya que son más densos, ofrecen mayor estabilidad y aislamiento que los de dos cuerdas aunque estos últimos sean más fáciles de manejar.

Algunas zonas del país tienen un buen aprovisionamiento de paja durante todo el año, mientras que en otras sólo la pueden conseguir al final de la temporada, antes justo del siguiente corte. Lo mejor es conseguir los fardos muy pronto en el proceso de diseño de la casa, para que las medidas encajen perfectamente; es enojoso haber diseñado un edificio para fardos de 42 pulgadas y no encontrar más que fardos de 46 pulgadas. Es también prudente verificar la disponibilidad de los fardos antes de comenzar la construcción.

Para determinar el tamaño medio de los fardos, tumba 10 de ellos, elegidos al azar, alineálos y mide la largura total, después, divide entre diez para tener la largura media. Haz lo mismo para la altura: pon los fardos amontonados en dos pilares tan altos como puedas contra la pared, y mídelo para determinar el tamaño medio. Usa medidas ligeramente más largas para los módulos de los fardos para encajar así las diferencias en la construcción. Es mucho más fácil rellenar huecos o rendijas que hacer cantidad de fardos por encargo. Hacer fardos de diferentes tamaños para diferentes aplicaciones puede ser muy útil, sobre todo los fardos pequeños, que se pueden utilizar para el interior al dar mayor flexibilidad al diseño de paredes.

Para reducir la anchura de los fardos y conseguir tener cada lado cuidadosamente cortado, el canadiense Louis Gagné realizó modificaciones. La paja compacta disminuyó su anchura de 500 mm a 350 mm, y paredes hechas de placas de acero se añadieron a las recámaras.

Los nuevos fardos modificados resultaron extremadamente efectivos, eran rectos, planos y con un buen acabado, se reducía así el trabajo para la construcción de las estructuras. Otro adelanto era que se eliminaban los pliegues de la paja en un lado de los fardos, creando superficies muy bien enyesadas a ambos lados de los fardos.
CONTENIDO DE HUMEDAD

La humedad ideal de los fardos es de menos del 14% (como porcentaje de “peso seco”) pero, en Nuevo México, se acepta el 20% como estándar aceptable.

Demasiada humedad es peligrosa, tiene que estar por debajo del umbral de la actividad biológica que produce la descomposición, que es generalmente del 14% al 16%; hay que proteger los fardos mientras se construye la estructura, no permitiendo que se humedezcan y, si se humedecen, asegurando su secado.

Hay dos razones importantes para preocuparse de la humedad de los fardos para la construcción. La primera, es asegurarse de que no estén tan húmedos como para tener problemas con la podredumbre. La segunda está en relación con el cálculo de la densidad de los fardos. La densidad de los fardos se puede calcular pesando y midiendo los fardos y calculando el número de libras por pie cúbico. Sin embargo, si los fardos contienen agua, la densidad aparente será mayor que la densidad real. Aunque una inspección visual suele ser suficiente para calcular si los fardos están secos o no para su utilización, para paredes que sostengan pesos es mejor utilizar algún método más seguro.

Medidores de la humedad de los fardos se pueden conseguir en Santa Fe, Nuevo México. Se puede hacer también cogiendo muestras de los fardos, ponerlos en un lugar sellado, pesarlos, secarlos y volverlo a pesar para calcular así el contenido de humedad. Este porcentaje puede ser usado para ajustar la densidad determinada por pesar y medir los fardos.

Se está inventando un instrumento para medir la compresibilidad real de los fardos en el campo. Una vez que haya sido desarrollado, probado y hecho asequible debería eliminar la necesidad de realizar pruebas de humedad excepto para determinar si los fardos están 10 suficientemente secos para ser enyesados o encerrados. Las investigaciones para poder determinar el contenido de humedad equilibrado de la paja a diferentes temperaturas y humedades relativas han sido limitadas.
CARACTERÍSTICAS DE LOS FARDOS

FARDOS DE DOS CUERDAS
- 14 a 16 pulgadas de alto
- 18 pulgadas de ancho
- 35 a 40 pulgadas de largo
- 35 a 65 libras (peso en seco)
- Valor-R (de resistencia al fuego) de 43.2 (situado horizontalmente)
- Valor-R 42 a 48 (situado verticalmente)

FARDOS DE TRES CUERDAS
- 14 a 17 pulgadas de alto
- 28 pulgadas de ancho
- 43 a 47 pulgadas de largo
- 60 a 90 libras (peso en seco)
- Valor-R 52.2 (en horizontal)
- Valor-R 42 a 51 (en vertical)

Como se puede ver en los dibujos, los fardos tienen tres medidas diferentes: altura, anchura y largura. Cuando la parte más ancha, o anchura, se pone paralela al suelo, se dice que está situado en horizontal. Cuando el más estrecho de los dos lados está puesto paralelo al suelo, se dice que está apoyado en vertical.
ALMACENAJE DE LOS FARDOS

Los fardos se deben mantener secos, antes, durante y después de la construcción. Tienen que ser almacenados fuera de la tierra, preferentemente en jergones, para que no absorban la humedad del suelo, y cubiertos con lonas alquitranadas de buena calidad para protegerlos de la lluvia.

Los plásticos y lonas baratas se pueden romper o agujerear, y esto haría que penetrase la humedad. Un buen método de protección es cubrir primeramente el montón con plásticos para hacerlo impermeable y posteriormente con lona. Es conveniente poner algo pesado, como ladrillos o bloques de cemento, en las puntas de las cuerdas que aten las lonas que cubren el montón de fardos, ya que el fuerte viento puede levantar dicha lona.

La lona también sirve para cubrir la pared durante la construcción, aunque no se espere lluvia, para así mantener secos los fardos.

Los fardos húmedos deben de almacenarse en filas más que en montones compactos para acelerar el secado y prevenir posibles problemas de combustión espontánea.

MANIPULACIÓN DE FARDOS DE PAJA

Los fardos de paja son fáciles de mover y de amontonar. Dos personas trabajando juntas reducen el esfuerzo y aceleran el trabajo. Los fardos de paja pueden ser abrasivos, así que, son altamente recomendables las camisetas de manga larga y los pantalones largos, también máscaras para el polvo, que suele ser intenso. Los guantes y ganchos para heno son también muy útiles. El secreto para levantar y mover los fardos es usar el peso del cuerpo en el momento más que utilizar la fuerza muscular. Cargar un camión a mano nos hace ver porqué estas operaciones se realizan ahora mecánicamente. Una carretilla es muy útil para mover los fardos no muy lejos. Un pequeño tractor con una pala frontal puede agilizar mucho el trabajo.

MODIFICAR FARDOS

Los fardos grandes pueden ser modificados a cualquier otro tamaño. Pero antes de cortar los nudos y para que el fardo no se deshaga, tiene que ser apretado y anudado otra vez.

Para modificar fardos se necesita un separador de fardos de polipropileno (en general, es mucho más fácil usar un hilo trenzado separador de polipropileno que un alambre
para fardos). Puede fabricarse una aguja de un trozo de varilla de acero de un diámetro de 5/16 de pulgada y 3 pies de largo. Una punta de la varilla se acabará aplanada y afilada en punta. Dos agujeros perforados cerca de la punta de aproximadamente 1/4 de pulgada de diámetro. La otra punta puede ser doblada en un ángulo de 90 grados para tener un agarradero de unas 6 pulgadas de largo.

Uno de los métodos más simples para modificar los fardos fue desarrollado por Jon Ruez, que construye muchos edificios de paja en el sur de Arizona.

• Determinar el tamaño de los fardos que se necesitan. Después, marcar el fardo cerca de cada uno de los nudos en el punto donde tiene que ser dividido. Tienes que cambiar de sitio los nudos originales antes de ser cortados.

• Calcula la longitud de hilo que necesitas. Haz esto enhebrando el hilo en la aguja y poniendo la aguja a través de la parte de arriba del fardo en el punto donde quieres dividirlo. El hilo tiene que ser suficiente para que rodee el nuevo fardo dejando suficiente para hacer un nudo al final y que continúe empujando suficientemente para rodear la sección que queda del fardo.

• Insertar la aguja en el punto donde el fardo será dividido, al lado del nudo, y empujar la aguja hasta el otro lado del fardo, intentando que vaya recta y no se tuerza; llevar la cuerda otra vez hacia el punto donde se insertó la aguja, separar los dos trozos del hilo (una libre y otra volviendo al inicio) manteniendo el curso del trozo de hilo que sale a la derecha o a la izquierda del otro lado del fardo. Esto se puede comprobar empujando una pieza hacia atrás y hacia adelante para determinar qué parte del nuevo fardo debería envolverse. El objetivo es evitar enroscar las dos cuerdas y que se queden enlazadas y tirar de ellas en dos direcciones distintas rodeando los fardos hacia el punto donde emerge la aguja.

• Cortar la cuerda en la aguja, después de comprobar que es suficientemente larga para rodear el nuevo fardo y dejando para hacer un lazo al final de una punta, y la otra punta atravesar la lazada y apretar fuerte. Entonces, coge otro trozo de hilo y repite el proceso cortando el hilo del rollo después de comprobar que es suficientemente largo para atar el lazo en una punta y la otra punta atravesar la lazada y apretar anudando. Dos simples nudos son suficientes. Es importante que los nuevos nudos estén tan prietos como los originales para mantener los fardos igualmente compactos.

• Enhebrar otra vez la aguja y repetir el proceso en los nudos que quedan. La mayoría de los fardos no tienen que ser cortados, sino que son fáciles de separar. Cuando el último nudo ha sido repuesto, se corta el nudo viejo y los dos nuevos fardos modificados se separan.
La modificación manual suele ser suficiente, pero para una producción muy grande se puede organizar una plantilla de compresión para asegurar tamaños uniformes.

Intentos de hacer fardos a medida de paja de arroz fueron difíciles en un principio, ya que los tallos de la paja fueron comprimidos en alineación. Los nuevos fardos no son fáciles de separar cuando el hilo se corta, cada parte del fardo tiende a empujar paja de la otra mitad. Hay que tener en cuenta esto antes de dividir los fardos. Serrar por la mitad del fardo antes de dividirlo resulta una buena idea.

Los fardos pueden cortarse también con una sierra, tanto mecánica como manual. También pueden cortarse con el tradicional machete, o con un cuchillo de cocina muy afilado.

Los fardos también se pueden modificar para formar ángulo o cuña para las puertas y ventanas, para más detalles en la modificación para puertas y ventanas ver capítulo 7.

A menudo, los fardos se tuercen o inclinan al colgarlos y deben ser enderezados. Poniendo otro fardo o alguna cosa para apoyar una parte del fardo, una presión de la mano o de la rodilla suele ser suficiente para enderezar el fardo. La misma sencilla técnica puede utilizarse para curvar los fardos para estructuras redondas.
CAPÍTULO 5: MUROS DE FARDOS

Se ha utilizado una gran variedad de sistemas para construir muros a partir de materiales embalados, aunque muchos nuevos aún tienen que ser estudiados y refinados. Cada construcción parece añadir otra contribución o mejora al mundo de la construcción con fardos.

La versatilidad de los fardos como material de construcción hace posible que sean usados en una gran variedad de estilos, métodos, materiales y variaciones del ingenio individual.

Algunos de los métodos que se usan han nacido de la necesidad; las históricas casas de Nebraska, por ejemplo, usaban fardos de paja para los muros de carga debido a la escasez de otros materiales de construcción.

En la época actual algunas estructuras han usado fardos como relleno mezclado con otros productos para conseguir los requerimientos del código, en casos donde se cuestionaba si los fardos tenían suficiente integridad estructural. Pliny Fisk desarrolló el atado en forma de escalera de cuerda en sus construcciones de fardos de paja porque el estado de Texas quería un diseño que pudiera aguantar la fuerza de los vientos huracanados.

El sistema a adoptar para un determinado tipo de construcción se determina generalmente por una variedad de factores, incluyendo códigos, tamaño, diseño del edificio, coste, disponibilidad de los materiales, consideraciones climáticas y de ingeniería tales como nieve, viento, cargas sísmicas y preferencias personales. El potencial de los fardos para muros de carga para ser utilizados más apropiadamente y eficientemente podría recaer en la realidad de un estilo de edificios y formas de construcción completamente nueva, dictado por la estética y los estándares de la construcción moderna.

Hasta ahora, los métodos conocidos que se han desarrollado para usar con fardos incluyen:

- Muros de carga, en los cuales los fardos están apilados en una hilera, como ladrillos, y sujetados todos juntos. Los muros, directamente, aguantan y sujetan el peso del tejado.
- Muros de carga con argamasa, en los cuales los fardos están apilados, tanto alineados como en vertical sin recubrir, y la argamasa se usa en las uniones entre los fardos.
- Fardos para relleno o muros de fardo para envolver, en los que otro sistema de estructuras apoya y une al tejado, y los fardos son insertados como material de relleno entre las columnas del armazón estructural, los muros de fardos envuelven el armazón estructural.
- Estructuras híbridas que usan una combinación de los métodos arriba explicados.
- Ampliaciones de construcciones existentes o casas móviles.
- Varios pisos
- Sótanos.
• Muros de arcilla ligera y paja, en los cuales la arcilla que une se usa con un montón de paja para formar material de relleno de muros dentro de los planes de construcción.

MUROS DE CARGA DE FARDOS DE PAJA Y PLACAS DE TEJADO

En los muros de carga, los fardos de paja soportan el peso del tejado directamente, sin ningún otro tipo de apoyo estructural, tales como postes de madera o columnas de cemento. Los fardos están generalmente apilados como ladrillos, en hileras, por lo tanto, cada fardo se asienta sobre la unión vertical de los dos fardos de debajo. Los fardos están unidos con cualquier material que sea adecuado para reforzar el muro. Una estructura horizontal o ensamblaje (llamada placa de tejado), que reposa en lo alto del muro de fardos, se usa para estabilizar el muro, para aguantar y distribuir el peso del tejado y para proporcionar el medio de conexión del tejado con los cimientos, permitiendo a la estructura soportar vientos y fuerzas sísmicas. La albañilería o una viga de cemento pueden ser usadas en lugar de la placa de tejado. Los muros de la estructura se establecerán o comprimirán por el peso del tejado en un corto periodo de tiempo. También pueden ser pre-comprimidos intencionadamente. Una vez que el proceso de compresión se ha acabado, se procederá al enlucido.

Los muros de carga de fardos fueron pioneros en las montañas de arena de Nebraska con la disponibilidad de un equipo de embalaje, que fue desarrollado para facilitar el manejo, el almacenaje y el transporte de los fardos. Los primeros enfardadores tendían a producir fardos más flojos que los compactos fardos modernos. A pesar de que las casas de Nebraska usaron esos fardos antiguos, un gran número de ellas permanecen en buenas condiciones, demostrando que los muros hechos con fardos pueden resistir el paso del tiempo.

Para algunas estructuras, este puede ser el método más simple y económico de construcción con fardos; sin embargo, hay algunos principios básicos que requieren atención cuando se construyen muros de fardos. El punto más importante es entender que los fardos son un material de construcción comprimible, en contraste con los convencionales materiales de construir muros, los cuales no se comprimen. Las cargas de tejado harán que los fardos se compriman - cuanto más grande sea el peso, mayor será la compresión. Con fardos muy densos y compactos y cargas normales, la compresión puede ser mínima, pero, incluso en estas condiciones, el diseño del tejado y las puertas y ventanas pueden concentrar cargas en ciertas áreas y causar problemas.

Si este tipo de muros no tiene aberturas y el peso del tejado se distribuye equitativamente en todos los muros del edificio, la compresión será, en teoría, igual en todos los paneles del muro. En la realidad, las diferentes configuraciones del tejado y los diseños de puertas y ventanas crean una carga desigual en los paneles del muro, que, a menudo, desembocan en una compresión desigual de los fardos del muro. Los problemas resultantes pueden variar de mayor a menor, dependiendo de la cantidad de diferencia en las
cargas y la densidad de los fardos, así como del diseño de la placa del tejado, puertas y ventanas.

Por ejemplo, cuando el espacio entre puertas y ventanas deja sólo estrechas columnas de fardos entre ellas, estas columnas pueden estar sometidas a una mayor carga que el resto de los paneles de la pared. Esto es especialmente cierto cuando se usa dinteles (parta superior de un marea), porque los dinteles cogen la carga de encima de la abertura y la distribuyen a las columnas de fardos a ambos lados de ella. Puesto que los fardos próximos a la abertura ya soportan la carga normal del tejado, esto puede hasta doblar la carga en esos fardos, dando como resultado una compresión adicional. Si a los fardos de tamaño normal próximos a las aberturas no se les ha vuelto a atar con la misma densidad de los otros fardos, se puede originar más compresión.

Columnas de soporte pequeñas y aisladas, y muros muy cortos y sin esquinas deberían evitarse o usarse con gran cuidado, por razones similares a las de arriba. Es también importante no mezclar fardos que soporten grandes pesos y soportes estructurales no comprimibles en la misma sección del muro.

Las estructuras más pequeñas y simples, así como aquellas con menores aberturas para ventanas. Naturalmente tendrán menos problemas. Las diferencias potenciales en la distribución de la carga serán mayores cuanto más largo sea el muro y más grande sea la estructura del tejado. Cargas vivas, tales como la nieve, más bien incrementan las diferencias potenciales.

Una placa de tejado suficientemente rígida en la vertical del plano cara resistir doblarse o hundirse por el peso ayudaría bastante a igualar la distribución de cargas en el tejado. Cuanto más efectiva sea la placa de tejado en repartir la carga del tejado sin deformarse, menos posibilidades habrá de que la carga se distribuya irregularmente.

Los muros de carga han ido mejor tradicionalmente en pequeñas estructuras o diseños relativamente poco complicados, con pocas y pequeñas ventanas. Algunos constructores piensan que los muros de carga son más apropiados para estructuras por debajo de los 400 pies cuadrados. Sin embargo, se han construido con éxito estructuras de carga mucho mayores y con grandes huecos para ventanas. Y muchas de las históricas construcciones con fardos son de aproximadamente 900 ó 1000 pies cuadrados. Es posible construirlas todavía más grandes.

Los métodos diseñados aquí para construir muros de carga con fardos han evolucionado a partir de métodos y técnicas usados en las primeras casas de Nebraska y los más recientes esfuerzos de un puñado de gente desarrollando construcciones de fardos de paja en Arizona y Nuevo México. Esta información fue concisamente organizada y promovida por Matts Myhrman, David Eisenberg y Steve MacDonald. El trabajo de Matts y David ha sido el foco principal del gran éxito de los talleres con fardos de paja, y forma las bases generales descubiertas para construir muros hechos de fardos en la ciudad de Pima, Arizona, y la ciudad de Tucson.

Debería notarse claramente, en el interés de la creatividad y del ingenio, que los métodos
explicados aquí no representan “la forma correcta” de construir un muro de carga de fardos. Representan una síntesis de los mejores esfuerzos realizados hasta ahora, y approxima un modelo por el cual sería posible la aprobación de un código. El libro Constrúyelo con fardos o Guía paso a paso para construir fardos de paja de Steve MacDonald y Matts Myhrman es un sencillo “hágalo usted mismo” enfocado a la construcción de estructuras de carga a partir de fardos de paja.

CÓMO ATAR LA PLACA DE TEJADO

En las estructuras de muros de carga hechas de fardos es importante conectar los cimientos con la placa del tejado, esto evita que el viento se pueda llevar el tejado y añade estabilidad estructural en caso de fuerzas sísmicas. Muchos métodos fueron desarrollados a finales de los 80 y principios de los 90, principalmente en combinación con las placas de tejado hechas de madera. Ya que, un método concreto de unión generalmente tiene que ser incluido en los cimientos, un método de conexión tiene que ser elegido antes de construir los cimientos.

Varas ensartadas

Uno de los métodos más comunes para crear una conexión continua entre los cimientos y la placa de tejado es usando las varas ensartadas. Estas están conectadas a los cimientos, atraviesan los fardos y salen por la parte de arriba para atarse a la placa de tejado.

Para servir de punto de unión, unos tornillos anda de 1/2 pulgada están empotrados en los cimientos. Secciones de 1/2 pulgada de varas ensartadas están conectadas a los tornillos anda con unas tuercas de ensamblaje. Las secciones de inserción no están separadas a más de 6 pies de distancia, con un mínimo de 2 por sección de muro y a unas 36 pulgadas del final de cada sección de muro.

En Arizona, los constructores observaron que habría sido deseable colocar todo el atado a no más
de 12 pulgadas de las esquinas, porque, cuando los muros fueron previamente comprimidos, las esquinas permanecieron más altas que el resto de secciones de los muros.

Las secciones de atados son después unidas a las secciones originales según el muro de fardos está siendo construido. Los fardos no tienen que ser elevados muy altos para ser empalados con los atados. Una vez que los muros están terminados, los atados se extienden a través de agujeros de taladro hasta la placa de tejado donde son anclados con las cuerdas. Usar los atados para unir los cimientos a la placa del tejado puede llevar tiempo, primeramente por el tiempo que se necesita para colocar correctamente los fardos encima de las varas para que estén correctamente colocadas en el muro.

Paul Weiner, arquitecto y constructor del edificio de fardos *Tree of L-fe Rejuvenarion Center*, hizo los cálculos para las secciones de atados de 1/2 pulgada usados en los muros de fardos. Estos cálculos determinaron que la colocación de los atados cada 6 pies en el muro es 20 veces más fuerte de lo necesario para soportar vientos de 75 mph. La parte más débil de la conexión (el lugar donde los atados se unen con la placa de madera) es capaz de soportar como media 162 libras de alzada, aunque una capacidad para soportar sólo 18 libras fue estimada suficientemente segura con vientos de 75 mph. Una pesada placa de acero, o acero maleable, debería usarse debajo de cada tuerca en cada lugar de atados para extender la fuerza a lo largo de una vasta área de madera.

Partes no atadas de 1/2 pulgada de diámetro de tuerca de acero podrían ser atados a cada extremo con ayuda de un tornillo y morir y usar en el lugar de los atados. Esto podría ser más barato, aunque lleva más tiempo, y podría usarse en esas partes del mundo donde los atados no están disponibles.

Se ha comprobado que es muy difícil penetrar fardos de paja de arroz en el levantamiento del muro de *Shenoo Retreat Center*. Los atados tenían que estar afilados antes de que los fardos pudieran ser empalados. Se ha desarrollado un aparato con una punta afilada llamado *Buliet* (bala) que puede ser enroscado en el final de una pieza de todo atado para usar con fardos de paja de arroz. Se pueden conseguir a través de *Real Goods*. Ya que los fardos de paja de arroz son diferentes de otros fardos, uno de los siguientes métodos de unión de placas de tejado podría ser más apropiado.

Cables, cuerdas y correas

Otros métodos para anclar la placa del tejado incluyen usar cuerda de cable, cable aéreo o correas de poliéster. Estos recorren la superficie del muro hasta la placa del tejado y son atados a los cimientos a cada lado del muro. Constructores y arquitectos experimentados sólo pueden especular acerca de la medida apropiada y el mejor emplazamiento de las cuerdas, cables y correas. Sin embargo, se han hecho cálculos de ingeniería recientemente sobre las correas de poliéster. Muchos de estos materiales se han usado con el mismo intervalo de 6 pies en las secciones de todo atado.

Hay varias estrategias para conectar cables a los cimientos. Se pueden encajar cánecos de 3/8 de
pulgada en los cimientos sin espaciarlos más de 6 pies unos de otros, con un mínimo de 2 cáncamos por sección de pared, y a menos de 3 pies del final de cada pared.

Se deben empotrar en los cimientos a un mínimo de 6 pulgadas de profundidad, con una tuerca pegada cerca del cáncamo cerca del final. Una funda de cable con forma de U a los cimientos con una banda a su lado podría funcionar también, así como mangas de plástico o metal situadas en la parte superior de los cimientos.

Usar correas, cuerda de cable o cable aéreo ahorra un montón de tiempo en el apilamiento de muros de fardos de paja, comparado a si usáramos los atados. Los fardos en el muro pueden ser simplemente amontonados y fijados sin tener la posición exacta sobre los atados, para algunos, la diferencia en tiempo es irrelevante, para otros, el proceso de intentar colocar fardos de 80 libras sobre atados puede ser frustrante y el cable o las correas pueden ser preferibles.

Cuando se usa cuerda de cable o cable aéreo se deben usar también protectores de esquinas de metal o guardacabos para el cable en cualquier punto donde el cable se doble sobre alguna otra superficie tal como una placa de tejado o una clavija. Para tensar más el atado de la cuerda o el cable, se usarán tarabillas o palos giratorios. Abrazaderas para cables conectan las puntas del cable entre sí. Se debe tener en cuenta que tarabillas, cerrojos, cables y correas están disponibles en diferentes tamaños y se deben elegir los adecuados.

Tom Luecke, de Boulder, Colorado, solicitó una alternativa al uso de metal o acero en los muros para minimizar los problemas motivados por influencias electromagnéticas y decidió usar correas de poliéster para asegurar la placa al tejado. Tom y el ingeniero de estructuras Jim Higerd, también de Boulder, determinaron que el colocar correas cada 3 pies proveería la suficiente resistencia en la mayoría de las aplicaciones. Una pequeña construcción con un tejado de cobertizo construido por Tom usando la
técnica de las correas soportó vientos superiores a 100 mph.

Después de evaluar diferentes tipos de correas, decidió elegir las de poliéster, medidas a 1.050 libras, que es tanto la resistencia a la rotura y a los rayos ultravioleta.

Tom también usa tiras de correas para comprimir los fardos de los muros. Coloca correas a intervalos de 2 pies alrededor de todo el perímetro de la construcción. Para anclar las correas a los cimientos, inserta tubería de pvc de 1/2 pulgada en los cimientos, a 3 ó 4 pulgadas de profundidad, como una manga para que las correas pasen a través. El borde de la tubería de pvc necesita ser redondeado o suavizado (con una pequeña pieza de goma, por ejemplo) para que las tiras de correas no sean dañadas. Las mangas de pvc pueden más tarde rellenarse de espuma o cualquier material adecuado para sellar los agujeros de los cimientos. Un extremo de la tira de correa se mete a través de la manga y llega a una cara del muro, hace un lazo en lo alto y baja al otro lado, donde es atada con el otro extremo de la correa. Tom prefiere tensar la correa con una herramienta de tensar, la cual le permite comprimir el muro. Donde no sea necesario comprimir el muro, las tiras de correa pueden atarse a mano, lo que quiere decir colgar todo el peso de cuerpo del extremo de la correa. Cuanto más pese la persona, más tensión podrá aplicar.

Las correas pueden colocarse sobre la placa del tejado bajando a cada lado del muro para conectar amarres en los cimientos. También pueden pasarse sólo por un lado, rodeando la placa del tejado y bajando por el mismo lado, repitiendo el mismo método en ambas caras del muro.

Otra posible estrategia es combinar métodos. Los atados pueden usarse a lo largo de toda la estructura menos en las esquinas, donde pueden usarse las correas, esto facilitaría alinear y colocar los fardos en las esquinas, que es más fácil con los atados.

Atados con madera

Cualquier material que cree una conexión suficiente entre el tejado y los cimientos puede usarse como atadura. Varios diseños han incorporado unas pequeñas tablas de construcción para servir a este propósito.

Construyendo un cobertizo almacén, Bob Bissett, de Idaho, utilizó piezas de 1x3, de 2 pies en el centro, apoyadas planas contra ambas caras de los fardos, los cuales fueron unidos a los cimientos y a la placa del tejado con correas de metal. Cada par de 1x3 fue unido mediante cables a través del centro de cada fardo. Los cables fueron apretados con una barra y asegurados con tornillos. Están conectados a la placa del tejado y a los cimientos con correas de metal. Este sistema tiene la ventaja de proporcionar una superficie claveteada para cable de estuco o láminas de roca y zonas claveteadas para baldas o armarios.

Bob Cook, de Tucson, ingenió un método igual de inteligente, mientras construía un edificio temporal para una tienda, usó láminas de 1x2 de tipo ladrillo cada 2 pies a ambos lados del muro para unir su rodapié (jergones de madera) a las placas de tejado de madera. Las láminas de 1x2 fueron unidas a los
fardos, que estaban apilados verticalmente, deslizándolas entre los fardos y las cuerdas de los fardos. Proporcionaron una superficie para poner láminas de piedra y baldas y crear un mínimo sistema de poste y viga para ayudar a soportar el peso del tejado.

Otros métodos de atado

La escayola, alambre y listones de metal usados para cubrir los muros de fardos, preparándolos para el enyesado, proporcionan una ayuda al atado de la placa de tejado. Algunas de las antiguas construcciones de Nebraska parecen asentarse principalmente en redes de escayola envueltas sobre el tejado para ayudar a asegurarlo. Empotrar las redes de escayola en los cimientos mientras se vierte el cemento es un método muy usado en los muros de fardos hechos libremente para ayudar a anclarlos a los cimientos.

Louis Gagné, junto con su molde para muros de fardos de paja y cemento, utilizaba una placa de tejado con muchos clavos largos, o alcayatas metidas dentro, en una cama de cemento para anclarlo a lo alto del muro de fardos.

Variaciones de esta técnica pueden ser encontradas tanto con argamasa como con cemento.

APILANDO FARDOS

Colocar los fardos es la parte más excitante de la construcción, si hay mucha gente ocupada en el levantamiento del muro ayuda a que haya una persona encargada de cada sección del muro y, a su vez, alguien encargado de supervisar el conjunto. Puede ser de ayuda tener planos de cada elevación del muro disponibles para tener una referencia periódica. Pueden estar pegados a las tablas para manearse más fácilmente y para evitar que vuelen con el viento.

Los marcos de las puertas pueden estar asegurados a los cimientos y temporalmente grapados antes del levantamiento del muro. La localización de las ventanas puede ser marcada en los cimientos y los marcos de las ventanas estar listos para instalar.

Los agarres pueden estar situados en las esquinas para servir de guía en el apilado de los fardos,
ésta era una práctica común en las viejas casas de Nebraska y ayudaba a conservar los muros estables y alineados hasta que el tejado estuviera colocado. La densidad y uniformidad de los fardos modernos ha reducido la necesidad de grapas de unión, pero éstas pueden, sin embargo, reducir el tiempo requerido para alinear y colocar los fardos de las esquinas. Si se desean unos muros muy alineados, la línea del albañil o nylon entrelazado puede ensartarse entre los amarres para ayudar a alinear los muros según se van construyendo, especialmente en tramos largos.

También se debe tener cuidado en conservar los amarres alineados según se va haciendo el muro, deben ser revisados cada cierto tiempo, suelen estar hechos de contrachapado. Se debe usar fardos de buena calidad, así como estar secos y ser sólidos.

Los fardos se deben apilar horizontalmente, para incrementar la estabilidad. Sin embargo, en pequeñas construcciones es más apropiado ponerlos en vertical, pues así se ahorra espacio, fardos de tres cuerdas que midan 23 pulgadas de ancho son más estables para muros de carga que los de dos cuerdas que midan 17 pulgadas. Cuanto más alto sea el muro, más anchos deben ser los fardos.

La primera fila de fardos estará anclada a los cimientos con palos y clavijas verticales. Colocar los fardos empezando en las esquinas y en los marcos de las puertas, e ir avanzando hacia el centro del muro. Asegurarse de que todo hueco que quede esté cerca de la mitad del muro, se debe evitar colocar pequeños fardos cerca de las esquinas u otro lugar más débil. En las esquinas es mejor colocar los fardos un poco dentro de los cimientos que solaparlos después.

También es más fácil corregir las irregularidades en las esquinas con yeso que corregir los fardos.

Los fardos a medida pueden hacerse en el mismo lugar. Los huecos de menos de 6 pulgadas pueden llenarse de copos de paja sin empacar, o suelta y es mejor dejarlo un poco flojo a llenarlo demasiado, ya que podría desalinearlos.

Se usan una especie de grapas para asegurar cada fila de fardos, están colocadas de forma que las dos puntas de la grapa están metidas en los dos fardos adyacentes, estas grapas pueden usarse donde se necesite mantener dos fardos juntos. Cuando los fardos deban ser unidos o atados o conectados es más fácil mantenerlos alineados si marcamos el lugar en el fondo del fardo, aunque también es posible alinear los fardos a ojo, el método de colocar una tercera persona para ver el alineamiento, y realinearlo si es necesario, es bastante común.

Pero a pesar de todas estas precauciones, los muros deben comprobarse cada cierto tiempo, un bastón de 4 pies o más sirve para el propósito de alinearlo.

Una vez que la primera capa de fardos ha sido colocada, las siguientes serán aseguradas con un aparejo para que queden bien fijas, es bastante común para los que las colocan por primera vez que les sobrevenga el frenesí del fardo es decir, el deseo de progresar muy rápido.

Sin embargo, las irregularidades del muro pueden corregirse con lo que tengamos a mano.
Por otra parte, algunos constructores han abandonado el construir los muros alineándolos porque han comprobado que se pueden construir igual.

PUERTAS Y VENTANAS

La localización de los marcos de las ventanas debe ser decidida de antemano, según se va haciendo el muro, aberturas para puertas y ventanas en el muro deben estar a una distancia de las esquinas de un mínimo de un fardo para evitar desgajar la integridad del mismo.

Las cargas de los muros y el tejado encima de las aberturas necesitan refuerzos, una forma de hacerlo es colocando marcos estructurales capaces de transmitir ese peso a los fardos de debajo. Dinteles, vigas, o placas de tejado reforzando las aberturas, son otras posibilidades. Usar solo fardos sólidos y bien comprimidos en combinación con estas aberturas. Los marcos estructurales que van hasta el suelo no se comprimirán como el resto del muro, necesita dejarse espacio libre en estas estructuras para ello.

CLAVAR LOS FARDOS

Clavar fardos de seguridad en los muros uno contra otro y reforzar los muros es la forma más común de darle fuerza y consistencia al mismo. Ya que antes de colocar la placa del tejado el muro no tiene mucha estabilidad, especialmente los que son más altos de 7 hileras, además le da estabilidad en caso de fuertes vientos o problemas sísmicos.

![Diagrama de clavado de fardos](image)

Normalmente, la primera hilera se clavará a los cimientos y la segunda a la primera. Otro método es clavar una hilera a las 2 inferiores y así sucesivamente.

Otro método alternativo es empezar en la cuarta hilera y continuar hasta el tejado.

Los clavos se colocarán también a menos de 1 pie de puertas y ventanas, un pequeño martillo o mazo puede usarse para clavar los clavos.

En los fardos de paja de arroz es relativamente difícil clavar nada, en estos casos se deberá...
tener especial cuidado.

MATERIALES ALTERNATIVOS DE CLAVADO

Hay una gran variedad de materiales a utilizar, por ejemplo, clavijas de madera o palos, bambú y también ramas ayudarán a darle estabilidad.

Palos de bambú: el bambú en muchas circunstancias puede ser un gran material para clavar los fardos, especialmente por lo económico que resulta.

Es importante que los palos de bambú sean algo más largos de lo necesario, ya que podría haber que afilarlos, con lo que perderían algo de longitud, al introducirlo habrá que tener un especial cuidado para que no se doble.

PLACAS DE TEJADO

La integridad estructural de la construcción se verá hasta cierto punto afectada por el diseño, la construcción y el método de conectarse a la placa de tejado.

El muro de carga de la placa de tejado cumple diversas funciones, en primer lugar, proporciona una estructura rígida para estabilizar la parte superior del muro de fardos, el segundo, es que sirve de punto de conexión con el tejado. Tercero, ayuda a distribuir equitativamente el peso del tejado en el muro, y por último, la placa de tejado sirve de conexión entre el tejado y los cimientos.

![Diagrama de placa de tejado](image)

COLUMNAS DE MADERA

Estas últimas añaden estabilidad a la placa de tejado y, al añadir estabilidad, permiten sustituir a otro tipo de ingenios de construcción, como por ejemplo los dinteles.
Otras opciones:
En lugares donde no es fácil conseguir madera son muy eficaces las columnas de cemento, así como cuando los fardos de paja son de mala calidad o están mal prensados.

COLOCACIÓN Y PRENSADO

Una vez que el tejado está colocado, se espera a que los fardos se compriman naturalmente por su propio peso, pero si no se quiere esperar, se pueden comprimir usando correas o diversas formas de atados para acelerar el proceso.

![Diagrama de colocación y prensado](image)

Es muy importante usar fardos densos y compactos, pues la diferencia de compresión de los crear una estabilidad desigual en la parte alta del muro y crear problemas con el paso del tiempo.

FARDOS CON MORTERO

Usar mortero entre los fardos dará más estabilidad al muro y lo hará más rígido.

Y, como los huecos entre fardos estarán llenos con mortero, el muro será también mucho más firme.

Este sistema será especialmente útil si los fardos son débiles, si se espera que la construcción tenga que soportar nieve o si se va a construir más de un piso, pero también la construcción será más lenta.

La más antigua versión de este tipo de construcción data de China.

También puede añadirse hierros en alguna de las uniones con mortero para dar todavía más estabilidad al mismo.
FARDOS DE RELLENO

El método más común de construir muros de fardos en los tiempos actuales consiste en usar los fardos como material de relleno en combinación con algún otro sistema de estructura de apoyo. Este método ha sido elegido por su simplicidad y rapidez, así como por su economía. También permite hacer una construcción más alta y con unas ventanas más grandes, la técnica de construir con fardos de relleno es muy similar a la normal, la diferencia fundamental consiste en que el método para conectar la placa de tejado no es necesario.

Unir los fardos a las vigas horizontales o sus equivalentes puede hacerse de varias formas, pero la más utilizada consiste en usar pasadores de metal, los cuales pueden ser usados también para cubrir las uniones entre los mismos, la máxima altura permitida con este sistema será de 12 pies.

ESTRUCTURAS NORMALMENTE USADAS CON FARDOS DE RELLENO

Este método se usa principalmente con fardos de paja, las estructuras pueden ir desde las muy sencillas a las más complicadas.

Los postes pueden ir igualmente en el interior o en el exterior del muro pero en el interior ayudarán a proteger mejor contra el viento.

Otra opción sería colocar los postes en el medio de los fardos en el exterior del muro, dejándolos expuestos. Los fardos pueden ser fuertemente atados dentro de la estructura de las columnas.

Sin embargo, todo dependerá de las inclemencias que dicha construcción deba soportar.

POSTES Y VIGAS MODIFICADAS

Este sistema es uno de los más eficaces métodos de construcción en relación de coste, material y trabajo. Difiere de otros métodos, en que las aberturas para las ventanas están formadas como parte del soporte estructural de la construcción y están distribuidas a lo largo de la misma.
Los postes sólo se colocarán en las esquinas y en zonas donde no haya ventanas. Donde hay insuficientes ventanas y puertas para dar estabilidad al edificio, se utilizarán cajas de columnas, que además eliminarán la necesidad de entallar los fardos para insertar los postes.

TENSAR LOS MUROS

Para esta labor los fardos no deben estar muy comprimidos, pues deben poder expandirse una vez colocados, una ventaja de este sistema es que se usa solamente una pequeña cantidad de madera comparado con otras formas.

MARCOS DE METAL

Hasta ahora los marcos de metal habían sido rara vez considerados para usar en combinación con construcciones de fardos, aunque la combinación de los marcos de metal y los fardos de paja ha resultado muy buena.

Además, este método nos permitirá ahorrar dinero y tiempo de construcción.

Aunque algunos opinan que los marcos de metal pueden causar disturbios electromagnéticos, es una buena opción para usar en combinación con otros métodos.

BLOQUES DE CEMENTO O COLUMNAS DE ARGAMASA

Este tipo de columnas no ha sido muy utilizado dada la disponibilidad y economía de los de madera. Sin embargo, hay muchos testimonios de gente que ha usado estos últimos en combinación con muchos otros tipos de columnas tales como las de cemento o hierro.

Para este tipo de construcción se usará espuma como aislante para evitar goteras en la construcción.
LA ALTERNATIVA DE LA MADERA PRENSADA O LOS BLOQUES DE ESPUMA AISLANTE

Estos bloques aislantes están hechos de un 88% de viruta de madera y cemento de baja toxicidad, parecen ser una excelente posibilidad para soportar columnas. Aunque nunca han sido utilizados como columnas de carga en muros de fardos, tienen muchas ventajas sobre los clásicos bloques de cemento ya que son más ligeros, se pueden cortar con una sierra y se puede clavar en ellos, así mismo tienen un poder aislante valorado en 1.75 por pulgada.

SISTEMAS HÍBRIDOS DE MITRO

Es una forma alternativa a los clásicos muros de fardos, en ellos se ha empezado a utilizar columnas mucho más estrechas confiando en la estabilidad de los muros de fardos para actuar como soporte, lo cual no tiene sólo la ventaja de ahorrar en materiales sino también un diseño más ligero y una disminución de problemas como la necesidad de una placa de tejados rígida.

También se suele usar este tipo de sistema cuando nos apremia la necesidad de no perder tiempo en la construcción.

RETROFITS

Esta es una de las áreas más importantes de la construcción con fardos, se utiliza con las estructuras con problemas térmicos. Cemento, metal, marcos de madera y estructuras de adobe son los candidatos ideales para fardos retrofit.

También está especialmente recomendado en grandes construcciones. Dependiendo del tipo de las mismas, los fardos se colocarán tanto en el exterior como en el interior del edificio.

Por lo general, se añaden unos nuevos cimientos afuera de los ya existentes y los fardos se colocan encima, atados a la estructura ya existente~ Los aleros del tejado, generalmente, han de extenderse para proteger el nuevo muro.

En el caso de que se coloquen en el interior, los fardos se situarán reforzando columnas y vigas para dar más estabilidad al edificio.

VARIAS PLANTAS

Al construir una casa, merece la pena considerar las numerosas ventajas de construir un edificio de dos plantas, puesto que usan la misma estructura de tejado que las de una planta y ofrecen el doble de espacio habitable.
Se han construido varios edificios de 2 plantas por el procedimiento de los fardos. El que se acabó más rápido fue la mansión de Burritt, en Alabama, en 1936.

El ayuntamiento de Canadá se comprometió a hacer un año de prueba en la construcción de muros de fardos en 1994, de esta forma controlarán la temperatura y humedad del edificio, y algunas pruebas para testar la compresión y las cargas.

Teniendo en cuenta que algunas de estas pruebas fueron hechas en zonas con gran cantidad de nieve, esa información será muy útil para posteriores construcciones.

SÓTANOS

Nebraska fue pionera en incorporar fardos de paja en los muros de los sótanos.
Los fardos fueron usados mezclados con cemento y con revestimiento de alquitrán.
También se ha comprobado que la temperatura en los sótanos ha permanecido muy estable incluso en las épocas más frías del invierno.

CONSTRUCCIONES DE PAJA Y ARCILLA

Es una de las más antiguas formas de construcción conocidas, las más antiguas datan de Europa en el siglo XII, aunque se pueden encontrar otros ejemplos en otras partes del mundo.

La mayor parte de estas construcciones usan una estructura de madera, y forman muros de unos 2 pies de ancho, tradicionalmente la mezcla se hacía a mano, para la estructura también se pueden usar materiales más ligeros, como el bambú.

Así mismo, diremos que la combinación de paja y arcilla crea una combinación de fardos que permiten la transpiración y son un gran aislante al mismo tiempo.

Este método de construcción requiere poca habilidad y unas herramientas muy sencillas.
También es cierto que hay que tener muchas precauciones a la hora de construir con paja, porque una semilla olvidada en el fardo tenderá a brotar con la humedad.
CAPÍTULO 6: VENTANAS Y PUERTAS

Las aberturas para puertas y ventanas juegan un papel importante a la hora de definir la personalidad de un muro de fardos. Los espesos muros de fardos crean una zona de transición que puede desarrollarse de varias maneras entre el interior y el exterior del edificio. Ventanas y puertas requieren un tratamiento diferente en muros de carga hechos con fardos y en estructuras con muros rellenos de fardos. En los muros de carga, la combinación de pesos vivos y muertos del tejado se asienta directamente sobre las paredes, lo que incluye los marcos de puertas y ventanas. Con estructuras rellenas, todas las cargas del tejado son absorbidas por cualquier estructura de carga que se utilice y sólo las cargas de la pared sobre puestas y ventanas son soportadas por el armazón, el marco de la ventana o de la puerta.

MUROS DE CARGA DE FARDOS

Las primeras estructuras de Nebraska utilizaban dinteles de madera sobre ventanas y puertas. Las secciones de pared solían tener pocas aberturas para ventanas, que generalmente eran pequeñas y con cortos espacios para los cabezales. Cuando una pared está totalmente hecha de fardos compactos se comprimirá, relativamente, de una manera uniforme bajo los pesos del tejado si no hay aberturas en ella. Cuando se añaden aberturas para ventanas y puertas, el asentamiento se hace diferente en potencia en algunas o todas esas partes. La tendencia a un asentamiento desigual aumenta en proporción al número y anchura de esas aberturas.

Para dejar entrar más luz en una habitación, las ventanas estrechas pueden hacerse más altas. La distancia a la que entra la luz en un espacio es determinada más por la altura de una ventana que por su
anchura. Así, las ventanas orientadas verticalmente permiten iluminar mejor una habitación que las orientadas horizontalmente. Es posible hacer aberturas más anchas, pero hay que tener en consideración ciertos factores de diseño.

Los edificios de fardos modernos han hecho frente a las aberturas para ventanas y puertas utilizando placas de tejado, dinteles de metal o armazones estructurales. El método utilizado con menor frecuencia, pero potencialmente el más fácil y eficaz, sería usar una placa de tejado rígida capaz de extenderse sobre grandes aberturas, y así eliminar la necesidad de dinteles o molestos armazones estructurales.

DINTELES

La forma más común de abordar las aberturas para puertas y ventanas en muros de carga de fardos ha sido la de utilizar dinteles del tipo de escalera de acero, sugeridos originalmente por David Bainbridge, para abarcar la abertura. También pueden utilizarse de madera. Cuando se utilizan dinteles, la combinación de pesos vivos y muertos del tejado que se apoyan directamente sobre ventanas y puertas se distribuyen a través del dintel a los fardos a cada lado de la abertura. Ya que los fardos se comprimen, la diferencia de peso ejercida en los fardos bajo los extremos de los dinteles, comparados con los otros fardos de la pared, puede causar diferencias en el asentamiento y provocar que las placas de tejado se inclinen o que el sistema de acabado de la pared se rompa. Pesos vivos de nieve, viento, etc. pueden agravar aún más estos problemas potenciales.

El dintel debería ser dos veces más largo que la anchura de la abertura, extendiéndose un mínimo de 2 pies a cada lado de la abertura. Los dinteles deberían ser lo bastante fuertes para asegurarse de que no cederán y, aún así, no ser innecesariamente pesados. Hay que evitar utilizar dinteles en paredes con fardos de diferentes grados de compresión y solidez ya que eso aumenta la posibilidad de diferencias de asentamiento.

La mayoría de los dinteles de metal están hechos de un ángulo de hierro de un 3/16 ó un 1/4 de pulgada de grueso por 2 ó 2 1/2 pulgadas, con correas cruzadas soldadas aproximadamente cada 1 6 2 pies. La última correa cruzada a cada lado del dintel puede ser perforada para soldar un trozo de barra de refuerzo en ella, extendiéndola por arriba y por abajo, para sujetar el dintel en su sitio. Si el dintel reposa
sobre medios fardos al lado de una abertura para ventana, se puede usar una o dos grapas de barra de refuerzo para sujetar con mayor seguridad los medios fardos al resto de la pared. El dintel debería abarcar al menos hasta la mitad de los fardos a ambos lados de la abertura.

Los armazones para ventanas y puertas que se utilizan bajo los dinteles deberían ser medidos para asegurarse de que permiten la compresión que tendrá lugar a cada lado de la abertura. De otro modo, el dintel ejercerá presión directamente sobre el rígido armazón, posiblemente deformándolo y creando problemas de diferente asentamiento en la pared.

Otra opción es colocar los armazones de madera para las ventanas en su abertura después de que el asentamiento o pre-compresión se ha completado. Los armazones de ventana pueden ser entonces instalados y ajustados correctamente a la medida de la abertura. Una desventaja de este método es que resulta más difícil mantener los fardos uniformes alrededor de la abertura de la ventana. En vez de colocar fardos sólidos contra un armazón sólido, se deben recortar los fardos y rellenar con paja suelta donde no encaja el armazón.

Los intentos de resolver el problema de las cargas no uniformes en los dinteles llevó a desarrollar un armazón estructural de ventana que flota en la pared y esencialmente reemplaza a los fardos que deberían haber estado en la pared donde el armazón ha sido situado. Con el armazón estructural, la combinación de pesos sobre la estructura es transferida a través del armazón a los fardos bajo la estructura. Este tipo de armazón debería construirse a medida para llenar la altura comprimida de los fardos que reemplaza, y ser lo bastante rígido para transferir los pesos sin deformarse. Estos armazones también pueden construirse de manera que se apoyen directamente en los cimientos.

El armazón estructural de ventana más comúnmente utilizado está hecho con un cabezal de viga revestido de madera contrachapada de 2x6 que está sujeto por dos columnas verticales de tipo caja, revestidas de madera contrachapada de 2x4. Estas columnas se asientan sobre una viga de caja como la del cabezal. Cuando el armazón se asienta sobre los fardos bajo él y no se extiende a los cimientos, es importante hacer la parte baja del armazón tan rígido como el cabezal para que ambos puedan transmitir sus pesos sin deformarse.
Los 2x4 verticales en las columnas de caja se sitúan normalmente en vertical o paralelos a la sección de pared para proporcionar mayor resistencia al golpeteo del marco de la puerta. Tanto el cabezal como las porciones de columna del marco están revestidos de madera contrachapada. Estos marcos suelen tener el mismo grosor de la pared de fardos, unas 24 pulgadas en una pared de carga de fardos de tres cuerdas.

Cuando se desea tener puertas y ventanas biseladas en armazones de fondo ancho, es necesario biselar el propio marco. Una forma de hacerlo es poner en ángulo las columnas verticales y biselar los fardos a ambos lados de la abertura. Otra manera sería haciendo el marco más grande que la puerta o ventana y construir el biselado con madera.

También se han utilizado armazones estructurales de una anchura de tan sólo 12 pulgadas. Puesto que son más estrechos que los fardos de la pared, es necesario o centrarlos en la pared o asegurarlos a los cimientos para que resistan las cargas Desiguales que se ejercen sobre ellos desde arriba. Como no ocupan toda la anchura de la pared, se puede crear aberturas biseladas modificando los fardos en vez de crear el biselado en la estructura de madera del armazón.

Los armazones de ventana necesitan algún tipo de refuerzo temporal para mantenerlos alineados durante el proceso de construcción. Los constructores han utilizado de todo, desde láminas de madera contrachapada y tablones de OSB que cubrían completamente el hueco, hasta abrazaderas diagonales y de esquina.

Los armazones estructurales para puertas se construyen como los de ventanas, y se apoyan directamente sobre los cimientos. Normalmente, se han utilizado armazones de la misma anchura que la pared de fardos. Cuando se apoyan directamente sobre los cimientos, se usan pernos de anda para sujetarlos. Es mejor sujetar los armazones en su sitio y reforzarlos para que permanezcan verticales antes de levantar las paredes.

Tanto los armazones de ventanas como los de puertas se suelen montar sobre la pared de fardos con clavijas de madera de 5/8 de pulgada por 12 pulgadas de largo a través de agujeros perforados en los cuatro lados del marco de madera. Para conservar la protección contra la humedad conseguida mediante una barrera anti-humedad situada bajo la ventana, la parte de abajo del armazón no se suele sujetar a los fardos bajo él. Se suele usar un listón de metal entre el fardo y el marco para reforzar aún más el punto de conexión para el estuco y el acabado de argamasa. Si no hay fardos encima, el marco puede sujetarse directamente a las placas de tejado una vez hechos todos los ajustes.

Si los armazones de puertas y ventanas se apoyan directamente sobre los cimientos, hay que tener en cuenta la compresión sobre el marco. Otra opción es sujetar el marco de la ventana a la placa de tejado y dejar sitio para ajustarse debajo del alféizar.
Debido al potencial que tienen las placas de techo de inclinarse y combarse sobre los armazones estructurales para puertas durante la compresión de paredes de carga, Paul Weiner desarrolló una cuña ajustable para el espacio dejado para el asentamiento sobre el armazón. Se colocan listones cortados en diagonal de 2x4 entre el marco y el fardo sobre él y se van quitando gradualmente mientras las paredes se asientan. Estas cuñas ajustables crean espacio sobre el marco de la puerta para las placa de tejado y para que los fardos (si hay alguno) se asienten sobre el marco sin causar ningún desnivel en la placa de tejado.

En paredes de carga de fardos, generalmente, no deberían situarse ventanas o puertas cerca de las esquinas para mantener la integridad estructural del edificio. Se deberían utilizar fardos enteros en todas las esquinas de las paredes estructurales.

PAREDES CON RELLENO DE FARDOS

Probablemente, el método más simple para ventanas pequeñas es colocar en la pared un armazón de madera bastamente serrado hecho de láminas de 2x8 y asegurarlo con clavijas de madera que atraviesen los lados del armazón hasta los fardos. Sólo tiene que poder soportar el peso de los fardos situados sobre él, no los del tejado.

Los armazones para puertas y ventanas grandes también pueden sujetarse a los postes estructurales. Estos marcos pueden ser simples y sin complicaciones puesto que pueden apoyarse en los postes para conseguir estabilidad y soporte.

LINEAS GENERALES

Es necesario tomar precauciones cuando los huecos para ventanas y puertas combinados exceden el 60% de la superficie total de la pared, porque la resistencia de la pared de fardos puede verse reducida en gran medida en su capacidad para resistir el viento, la acción sísmica, y las cargas verticales del tejado. La concentración de las cargas del tejado sobre pequeñas secciones de las paredes de carga de fardos aumenta la posibilidad de asentamiento desigual.

Un cabezal que mida 8 pies necesita una resistencia cuatro veces mayor que la de uno de 4 pies, no solamente el doble. Un buen consejo es que los cabezales de ventanas y puertas no midan más de 8 pies. Un problema con los cabezales puede producir complicaciones secundarias como ventanas y puertas que no se abren o ventanas rotas.

Si se quiere conseguir huecos para ventanas grandes, como los usados en paredes orientadas al sur con diseños solares, puede ser más sensato usar una estructura de madera para esa pared, y utilizar los fardos como relleno o súper aíslar con materiales convencionales. Hay que tener cuidado cuando se combinan paredes estructurales con paredes de carga hechas de fardos para ajustar las diferencias de asentamiento.
Los fardos situados directamente bajo las ventanas son particularmente vulnerables a la humedad de la condensación de la lluvia y la nieve. Se puede colocar una barrera contra la humedad sobre los fardos que se hallan directamente bajo esos huecos. Algunos constructores prefieren situar las ventanas en el borde de fuera de la superficie exterior del muro de fardos para evitar los daños causados por la humedad. De cualquier modo, un alféizar emplomado o con azulejos con una inclinación adecuada debería proporcionar suficiente protección contra la humedad.

Si se montan las puertas en el borde exterior de la pared, hay que tener en cuenta que sólo se abrirán en un ángulo de 90° a menos que el interior de la pared esté biselado y permita que se abra completamente.

También es posible situar las ventanas en el medio de la pared de fardos de forma que estén equidistantes de los bordes exteriores e interiores de la pared.

Con las paredes de fardos, se pueden crear amplios alféizares o repisas interiores cuando la ventana está situada en el borde exterior, y pueden ser usados para colocar objetos decorativos como floreros. Cuando son lo suficientemente grandes, pueden usarse como asientos de ventana.

Cuando queramos crear huecos biselados o redondeados, se pueden modificar los fardos acortando dos cuerdas seguidas de un fardo de tres cuerdas o una de un fardo de dos cuerdas. La segunda de las dos cuerdas del fardo de tres tiene que ser acortada más que la primera para conseguir el ángulo deseado. Cuanto más grande sea la diferencia entre las dos, mayor será el ángulo. Hay que evitar que las cuerdas de la sección biselada del fardo se caigan por la parte más corta del fardo. La forma más sencilla de conseguirlo es atar las cuerdas una con otra a un lado del fardo, enrollar la cuerda alrededor del fardo, y atar las cuerdas al otro lado.

Una vez que los fardos han sido atados de nuevo, se pueden envolver los fardos de la estructura de la ventana con láminas de metal para conseguir la forma deseada y añadir resistencia al hueco. Los huecos redondeados se pueden conseguir de la misma manera usando láminas de metal. Algunos constructores consideran que una malla de estuco es y que no son necesarias las láminas de metal. Algunos constructores sólo acortan una cuerda del fardo y así se acentúa la esquina redondeada.

CAPÍTULO 7: CIMIENTOS

El diseño de los cimientos depende siempre de las condiciones locales y las características específicas del edificio que van a tener que aguantar. Los factores locales que afectan al diseño incluyen la capacidad de carga del suelo, el tipo de suelo, la profundidad de la línea de congelación y el nivel del subsuelo acuífero, inclinación y alcantarillado, la carga de los fuertes vientos y las condiciones sísmicas.
Los cimientos convencionales a menudo constan de dos partes, un pie y un muro de contención. El pie aguanta el peso del muro a nivel del suelo y lo distribuye al suelo bajo él. La profundidad del pie se determina por la profundidad a la que el suelo se hiela en invierno, por la distancia a la que está de suelo sólido y varios factores más que tienen que ver con el diseño específico del edificio.

El muro de contención se asienta en el pie y se eleva sobre el nivel del suelo, normalmente unas 6 pulgadas o más, para proteger las paredes y el suelo del agua y la humedad. También transfiere el peso de las paredes al pie.

Debido a la anchura extra de los fardos de paja, los cimientos de un edificio de fardos pueden necesitar más del doble del material que una estructura de madera de 2x6. Debido a ese incremento de los costes y materiales, se están haciendo populares estrategias como la de los cimientos de zanja de escombros con vigas de hormigón.

Los cimientos deben ser aislados, especialmente en áreas con condiciones atmosféricas extremas. Los cimientos sin aislamiento pueden ser responsables de hasta un 17% de la pérdida total de calor de un
edificio. Una forma sencilla de aislar es utilizando un perímetro subterráneo de aislamiento. Puede ser eficaz extender el aislamiento horizontalmente. En las zonas donde ese tipo de aislamiento no está disponible, se pueden utilizar fardos en el interior de los cimientos y bajo el suelo del edificio.

DETALLES DE LOS CIMIENTOS PARA ESTRUCTURAS DE FARDOS

Los cimientos deben ser hechos a medida para acomodar la anchura y la carga de los muros de fardos. Deben ser lo suficientemente altos para proteger de la humedad la parte baja del muro. En la mayoría de los casos, 6 pulgadas por encima del nivel del suelo es una altura mínima aceptable. También debe haber un buen alcantarillado alrededor de los cimientos para alejar el agua de los muros.

Se suele incluir, como parte de los cimientos, una provisión para sujetar con pernos la primera fila de fardos. El método más corriente ha sido colocar barras de refuerzo (“rebar pins”) verticales del nº 4 empotradas en los cimientos a una profundidad mínima de 6 a 7 pulgadas y de una altura mínima de 12 pulgadas. Los estándares de Nuevo México estipulan que la parte alta de las barras de refuerzo deberán extenderse hasta la mitad de la segunda fila de fardos y estar espaciadas a intervalos que permitan colocar dos barras por fardo. Deberán situarse a 12 pulgadas de cualquier abertura o esquina, en los fardos de tres cuerdas, y a 9 pulgadas en los de dos cuerdas. Están colocados en los cimientos de modo que estén centrados en la anchura del fardo. Estas barras de refuerzo suelen tener forma de L en la parte de abajo de modo que se pueden anclar mejor y son más difíciles de arrancar.

Con estructuras de carga, suelen situarse puntos de anclaje en los cimientos para sujetar las placas de tejado al pie. Se suelen utilizar pernos de 3/8 de pulgada, pernos de anclaje de 1/2 pulgada o manguitos. La parte de arriba de los cimientos suele emplomarse para proteger de la humedad la parte baja de los fardos. Se suelen emplomar con plástico, emulsión de asfalto, fieltro para tejados, impermeabilizantes de cemento como Thoroseal o Drylock, o láminas de metal galvanizado para evitar que la humedad suba desde los cimientos a los fardos.

Mientras se construyen los cimientos se pueden utilizar eficazmente métodos de prevención de termitas. Una forma de reprimir las termitas es obstruir el estuco de encima de los cimientos para que cualquier tubo creado por las termitas subterráneas sea visible. Se puede utilizar un escudo de chapa de metal contra las termitas entre los cimientos y la primera fila de fardos. Si el metal se extiende sobre la parte superior del aislante de los cimientos y luego se dobla hacia abajo, las termitas tendrán que construir tubos visibles sobre el metal. Otra medida preventiva que se ha utilizado es la colocación de 3 pulgadas de arena de sílice debajo y a ambos lados de los cimientos.
CIMENTOS DE HORMIGÓN

El hormigón utilizado en los cimientos necesita ser reforzado, porque, aunque es fuerte en compresión (es difícil de aplastar), es débil en tensión (fácil de romper en dos). El material más a menudo usado para reforzar el hormigón son barras de refuerzo de acero porque son fuertes en tensión. Así, la combinación de hormigón y acero da como resultado un material muy resistente. El tamaño de las barras de refuerzo está indicado o por su diámetro en fracciones de pulgada o por un número que representa la cantidad de octavos de pulgada del diámetro; así, las barras del nº 4 tienen un diámetro de 4/8 de pulgada, o 1/2 pulgada. Las barras de refuerzo tienen un dibujo de pequeños nervios o cordoncillo para incrustarlas en el hormigón, y el diámetro no incluye esos nervios. Antes de que las barras de refuerzo estuvieran fácilmente disponibles, se utilizaban a menudo, como materiales de refuerzo del hormigón, alambre de espino, tubos viejos y otros materiales de acero.

En otras partes del mundo, donde las barras de refuerzo son caras y difíciles de conseguir, se ha utilizado bambú agrietado.

La mayor parte de los constructores aplican de 2 a 4 pulgadas de un aislante rígido al exterior del muro de cimiento de hormigón, algunos creen que, en climas más fríos, son necesarias 4 pulgadas. Los cimientos deberían ser hechos a medida para que la superficie exterior del aislamiento esté nivelada con la superficie exterior del muro de fardos para que sea más fácil aplicar el estuco. La superficie interior del muro base, si los fardos están por encima del suelo, debería ser nivelada con el muro de fardos, ya que no es necesario un aislamiento adicional en el interior. Una forma conveniente de sujetar el aislante a los cimientos son los tirantes de rizo de albañilería (tirante de ladrillo). A menudo, se coloca el aislante en el molde de hormigón antes de echar el hormigón. También se puede asegurar, después de echar los cimientos, con un adhesivo apropiado para sujetar espuma aislante al hormigón.

A menudo, se colocan planchas de madera de 2x4 o más pequeñas en los bordes superior interno y externo de los cimientos para apuntalar allí la red de estuco. Si se utiliza ese método, los clavos o pernos deberían sobresalir de la madera al hormigón para mantener en su lugar la madera.

Probablemente, el aspecto más tedioso de verter un pie de hormigón es construir el recipiente para mantener el hormigón húmedo. Una alternativa rápida es usar fardos en lugar de los recipientes de madera. Los fardos pueden ser forrados por dentro con fieltro para tejados y atravesados por estacas periódicamente para evitar que se muevan durante el vertido. Se pueden insertar espaciadores de madera entre los fardos para mantener la distancia adecuada.

En algunos lugares, es una práctica común hacer un suelo y cimientos de hormigón en un único vertido monolítico. En la mayoría de los casos, los bloques tienen unas 4 pulgadas de espesor y, a veces, tienen aislante por debajo en los climas más fríos. Es una buena idea incorporar al bloque monolítico unos
cimientos en los que el muro de contención se eleve sobre el bloque del suelo aproximadamente 4 pulgadas. Este ligero aumento en la elevación protege a la fila de fardos de abajo de la humedad excesiva en caso de un exceso de lluvia en los días anteriores a la terminación del tejado y de otros problemas relacionados con el agua dentro de la casa, como una bañera o un retrete que se desbordan.

MUROS DE CONTENCIÓN DE FARDOS DE PAJA

Michel Bergeron, de ArchiBio, en Québec, utiliza moldes con un espaciado doble para acomodar la anchura de los fardos, y con un par de pulgadas extra a cada lado. Cuando los moldes están listos, se vierten un par de pulgadas de hormigón, y después se coloca una fila de fardos en ellos. Después, se vierte más hormigón alrededor y sobre los fardos hasta que un par de pulgadas de hormigón coronen todo el muro. Impermeabiliza el exterior del muro y lo utiliza como unos cimientos super-aislados.

CIMENTOS DE ZANJA DE ESCOMBROS

Los cimientos de zanja de escombros consisten en una zanja llena de piedra comprimida (generalmente de piedra de río o piedra triturada de 1 a 1 1/2 pulgadas) y rematada con una viga de hormigón armado. Un método alternativo es usar una mezcla de grava y arena para asegurar un buen alcantarillado, en lugar de piedras más grandes. Sin embargo, en lugares extremadamente fríos y húmedos esto no sería aconsejable.

La viga se sitúa por encima de la línea de congelación, mientras que la zanja se extiende por debajo de ella. El peso del edificio es distribuido por la viga de forma uniforme y es transferido a la tierra por las piedras que llenan la zanja. La zanja de escombros suele tener el mismo tamaño que una de hormigón.

Los cimientos, tradicionalmente, se extienden bajo la línea de congelación porque el suelo se expande cuando el agua se hiela, causando algo llamado “ondulación”. Este fenómeno puede, de hecho, levantar parte del edificio, haciendo que los cimientos se resquebrajen y se derrumben. El enfoque clásico es extender los cimientos por debajo de la línea de congelación ya que el suelo bajo los cimientos no se helará. A menudo, esto tiene como resultado unos cimientos muy profundos y caros. El método de la zanja de escombros reemplaza el hormigón bajo el nivel del suelo con zanja bien drenada rellena de roca. La roca es mucho más barata que el hormigón, y mientras la zanja no contenga mucha agua estancada, no puede helarse y levantarse. Hay que hacer preparativos para drenar el agua que se acumule en el fondo de la zanja, y esto suele hacerse inclinando el fondo de la zanja y colocando un desagüe perforado o tubo en el fondo de la zanja para drenarla.

Los climas más húmedos y aquellos en los que el suelo se desagua mal necesitan un desagüe perforado en el fondo de la zanja, mientras que los climas más secos pueden pasar sin él.
Las zanjas tienen que ser tan anchas como la viga, incluyendo el perímetro de aislamiento, lo que significa 18 pulgadas para fardos de dos cuerdas y 23 pulgadas para los de tres cuerdas. El aislante va de la parte superior de los cimientos hasta el fondo de la zanja de escombros. La mayoría de los constructores lo utilizan en la superficie exterior del muro de cimientos, pero otros lo han situado en la parte interior. En el exterior proporciona mayor aislamiento.

En los sitios donde la línea de congelación es profunda, 48 pulgadas o más, se puede utilizar un aislamiento horizontal para cimientos de incluso 12 pulgadas que impide que la tierra se congele alrededor de los cimientos utilizando el calor que se escapa de debajo de la casa a través del suelo.

La viga se aísla horizontalmente y, después, el aislante se inclina desde el muro, horizontalmente, en un lecho inclinado de grava de 2 a 4 pies alrededor del perímetro del edificio. La espuma se cubre entonces con al menos 6 plásticos “mil” y se remata con tierra.

También se pueden utilizar bloques Faswall rellenos de hormigón armado encima de las zanjas rellenas de piedra. George Swanson utilizó dos filas de bloques de 9 pulgadas de ancho en lugar de vigas para acomodar los fardos de dos cuerdas; se pueden utilizar dos filas de bloques de 12 pulgadas de ancho con fardos de tres cuerdas. Este tipo de muro de contención tiene un valor aislante de R-26.

Una combinación alternativa para usar con fardos de tres cuerdas sería un bloque de 9 y uno de 12 pulgadas, dejando 3 pulgadas de más para una roca visible al exterior del bloque. Con el añadido de espuma aislante rígida en el interior de los bloques y la zanja de escombros, dos bloques sólidamente enlechados de 9 pulgadas crean unos cimientos de más de R-35, y con dos bloques rellenos de 12 pulgadas, unos cimientos de más de R-45.

Usar bloques Faswall en lugar de vigas simplifica mucho el trabajo del molde y elimina la necesidad de un aislamiento exterior rígido. Otro beneficio es que la argamasa se puede aplicar directamente en el bloque. Los bloques Faswall se pueden cortar con sierras convencionales y aceptan tanto clavos como tornillos.

PIES DE MADERA TRATADOS A PRESIÓN

Se pueden utilizar siempre que se utilice un bloque de hormigón como suelo. Para usarlo con muros de fardos, se cava una zanja bajo la línea de congelación y se rellena con 3/4 de pulgada de grava compacta de calidad. Se colocan dos láminas tratadas a presión de 2x8, o incluso una de 2x6 encima de otra de 2x8, en lo alto de la zanja de grava y sujetas a lo alto del muro de contención, revestido con madera contrachapada PT y se asegura bien. Después, se vierte un bloque de hormigón, con un mínimo de 4 pulgadas de hormigón que cubra el pie de madera.
CIMIENTOS DE PIEDRA

Se suele cavar una zanja bajo la línea de congelación y se echa una capa de hormigón de 3 ó 4 pulgadas. Se colocan barras de refuerzo horizontales en el hormigón húmedo a un mínimo de 3 pulgadas sobre el fondo de la zanja. Se colocan piedras en el hormigón húmedo y se añaden más hormigón y piedras hasta alcanzar el nivel del suelo. En ese momento, las piedras se colocan estéticamente en un mortero de cemento con 3 partes de arena y 1 de cemento Portland (sin cal). Si la superficie exterior de piedra no va a dejarse a descubierto sino cubierta con argamasa, se necesitará prestar menos atención a los detalles.

Si la superficie exterior de la piedra va a quedar a la vista, es necesario poner en la superficie interior de la roca el aislante del perímetro. La roca es un aislante muy malo, y es una buena idea usar aislante en el perímetro para asegurarse de que se mantienen los beneficios de unos muros de fardos bien aislados. Una opción puede ser utilizar espuma aislante rígida cubierta por un enchapado de piedra.

CIMIENTOS DE POSTE O PILAR

Las estructuras de fardos pueden construirse sobre suelos elevados sobre columnas o pilares. Cualquier método común para cimientos de poste o pilar puede funcionar. Los mayores cambios tienen que ver con la anchura extra de los muros de fardos, los métodos únicos para sujetar los muros de fardos a los cimientos (barras de refuerzo y varas encordadas de _ pulgada), y cualquier requerimiento especial relacionado con la impermeabilización o emplomado de la parte baja de los muros de fardos.

OTRAS POSIBILIDADES

En climas fríos, los sótanos son, a menudo, una posibilidad asequible por el tamaño y profundidad de la excavación que ya ha sido necesario hacer para dejar los cimientos bajo la línea de congelación.

Para algunas estructuras pequeñas, como cobertizos e invernaderos, son suficientes como cimientos las traviesas de ferrocarril. Tirantes para casas móviles, formados por tornillos de metal de tipo auger, son ideales para conectar al suelo estructuras que utilizan pies de traviesas y están sujetas a importantes cargas del viento.

Se pueden usar como cimientos sacos llenos de tierra húmeda, que luego se secarán ~ endurecerán como ladrillos de adobe. Nader Khalili ha construido bóvedas colocando sacos de arena en una base de arena de 4 pulgadas reforzándolos con dos hebras paralelas de alambre de púas entre filas de sacos todo alrededor del perímetro del edificio. La argamasa se aplicó directamente a los sacos sin ayuda de red de estuco. Parece que los sacos de harpillera y polipropileno son igualmente adecuados.
Para usar con muros de fardos, se puede cavar una zanja y llenarla con escombros, piedra, arena o cualquier material poroso que esté disponible. La profundidad de la zanja dependerá del alcantarillado local y las condiciones climáticas. El relleno para los sacos podría ser la tierra sacada de la zanja. Podría estabilizarse y tratarse con borato como medida de protección anti-termitas. Se podrían utilizar dos filas de sacos con dos hebras de alambre de púas entre ellas. También se les podrían atar tirantes para tejado. Utilizados con fardos de tres cuerdas, se les podría poner a lo largo de la zanja y ajustar la anchura. Se podría atravesar los sacos con grandes cantidades de barra de refuerzo para sujetarlos al suelo y espaciarlos como lo estarían en unos cimientos normales para conseguir refuerzo para la primera fila de fardos. No es bueno dejar que barras de refuerzo sin revestimiento entren en contacto directo con el suelo debido a la oxidación y a la posible migración de la humedad a lo largo de las barras.

Otra posibilidad es usar neumáticos como cimientos. Pueden ser elegidos de un tamaño aproximado al de la anchura de los muros, rellenados y apisonados con tierra estabilizada y rematados con argamasa de hormigón, si así se desea.

Para estructuras temporales, uno de los pies más sencillos sería una capa de plástico puesta en el suelo. El plástico también se podría usar para envolver toda la primera fila de fardos y, así, evitar que el agua se filtre entre el plástico que cubre el suelo y los fardos. El suelo bajo la primera fila podría ser elevado ligeramente para mejorar el desagüe.
CAPÍTULO 8: TEJADOS

Se pueden utilizar muchos estilos de tejado en las construcciones con fardos de paja. Sin embargo, el método constructivo del muro de paja puede influir en el tipo de tejado. Los edificios que utilizan fardos como relleno en combinación con un armazón estructural pueden ser rematados con cualquier tipo de tejado. Los edificios con muros de carga de paja están más limitados. Estos edificios son más estables a medida que avanza el proceso constructivo y son bastante sólidos cuando el tejado está en su lugar. Por esa razón, uno de los favoritos en los primeros edificios de Nebraska es el tejado a cuatro aguas. Permite a los cuatro muros tener la misma altura y distribuye la carga del tejado a los cuatro. Los constructores de estructuras de muros de carga típicamente se inclinaban por plantas y tejados sencillos.

Desafortunadamente, las estructuras de tejados, como son construidas habitualmente, requieren mucha madera y están sujetas a unas tolerancias muy rígidas. Sería ideal si se pudieran construir con la misma facilidad que un muro de paja, exhibiendo las mismas tolerancias y demostrando una reducción similar de madera. El desarrollo de tejados con estas características es, en muchos casos, la nueva barrera de la construcción con paja.

Un sistema de tejado que representa un paso positivo en dicha dirección, aún utilizando una estructura convencional, es el tejado vivo, desarrollado por ArchiBio, de Quebec. Los fardos se colocan en el tejado listos para la descomposición, realizando una plantación de semillas de plantas y flores salvajes. Este tejado acaba siendo una mezcla entre un tejado de turba y uno de paja.

Las discusiones acerca de los tejados alternativos invariablemente conducen al uso de bambú, paja, bóvedas y cúpulas. El bambú es un material muy versátil, que puede crecer rápidamente bajo una gran variedad de circunstancias. A comienzos de 1994, dos casas de paja se levantaron utilizando tejados de bambú. Una fue realizada cerca de Puebla, México, y la otra en Washington. Una con tejado de paja se construyó en el sur de Sonora, México, durante el mismo año. Debido a las complicaciones normativas en los Estados Unidos, podría ocurrir que, en países como México, que tienen una buena reserva de materiales de construcción indígenas y gente con habilidades constructoras tradicionales, se realicen los progresos necesarios en la construcción de tejados para las estructuras de fardos de paja.

Las bóvedas de fardos y las cúpulas son otra posibilidad, pero el desarrollo de estructuras válidas y exitosas requerirá dedicación, tiempo e investigación.

Los constructores de una sola dirección (conservadores) pueden alegar que el uso sostenible de la madera es para cuando sea absolutamente necesario y eligiendo productos que no requieran la tala de viejos bosques. Los puntales de madera hechos de 2x4 y otros productos de madera manufacturados a partir de árboles de pequeño diámetro procedentes de plantaciones forestales son mejores que las unidades de una pieza de madera maciza (laminada). El uso de soportes estructurales de acero, tan común en
construcciones comerciales, pero relativamente nueva para edificios residenciales, puede ser una alternativa exitosa a la madera para las construcciones de paja.

Cualquiera que sea el tipo de tejado elegido, es importante instalar canalones o algo equivalente que mantenga el agua alejada de las paredes.

TEJADO A CUATRO AGUAS

Es uno de los preferidos para edificios con un muro de carga de fardos y puede ser utilizado con estructuras de fardos que no sean de carga. Todos los muros pueden ser de la misma altura y la carga del tejado se distribuye a los cuatro muros (aunque no necesariamente igual), a diferencia del tejado de dos aguas, que distribuye la carga principalmente en dos muros.

En estructuras más largas y rectangulares, con tejado a cuatro aguas, la parte central del tejado puede utilizar puntales, usualmente hechos a medida en cada caso y realizados con secciones 2x4.

Los fabricantes de largueros (carpinteros de armar) pueden proporcionarlos o bien un tejado completo. Los largueros prefabricados son competitivos en precio respecto a los realizados artesanalmente, in situ, si hay una fábrica cerca.

Otra ventaja del tejado a cuatro aguas es que suele verse menos afectado por vientos fuertes que el resto de tejados. Pueden ser construidos con aleros de buenas dimensiones, que ayudan a proteger los muros de las inclemencias del tiempo, y pueden ser fácilmente extendidos formando porches.
Si se desea un espacio interior abierto o tipo catedralicio (no permitiendo espacio de ático) se pueden utilizar cordones paralelos o cerchas en la estructura del tejado. Las estructuras de cordones paralelos se realizan con largueros de 2x4 (cordones) conectados diagonalmente mediante un conjunto de tirantes diagonales unidos entre sí mediante placas dentadas metálicas o cartabones de madera contrachapada. La altura total de los cordones paralelos debe ser tal que permita un correcto aislamiento. Si se usan cordones no paralelos, el techo puede ser horizontal y el tejado desagua por gravedad. Las cerchas permiten beneficios similares de profundidad para aislamiento y una caída inferior para el techo. Se pueden utilizar para crear un espacio ático, situando el aislamiento alto en los largueros.

TEJADO PIRAMIDAL

Es, esencialmente, un tejado a cuatro aguas pero sin cumbre. Los cuatro pares se encuentran en un punto central en la punta de la cumbre. Una linterna (remate de cumbre) de cuatro caras ventiladas puede ser incorporada en la punta del tejado, siendo funcional por un lado y estético por otro. El tejado piramidal tiene la ventaja añadida de distribuir igualitariamente el peso del mismo en las cuatro paredes.

TEJADO A DOS AGUAS (GABLE ROOF)

El tejado a dos aguas ofrece la ventaja de permitir la incorporación de espacio bajo cubierta y de una ganancia solar adicional cuando los huecos de ventana se sitúan al sur. Al igual que los tejados de cuatro aguas, son buenos candidatos a utilizar largueros de 2x4. Tina gran variedad de diseños de cerchas son utilizables en este estilo de tejado. En la mayoría de las casas, los hastiales se arman con fardos más que rellenarse con ellos. En algunas construcciones, los fardos se extienden por delante de los dos últimos
pares o cerchas’ y son recortados para adaptarse a la inclinación del tejado. Una motosierra es muy útil para recortar la parte superior de estos fardos. No soportan ninguna carga y son confinados por los pares o cerchas, así que, si se colocan cuando la estructura del tejado está ejecutada, pueden ser cortados utilizando los pares como guías y sin equivocarse.

TEJADO A UN AGUA (SHED ROOF)

La pendiente de los tejados a un agua es solamente en una dirección. Es el sistema de tejado más sencillo para construir y es económico. Este tejado es una buena opción para constructores con experiencia limitada. Tiene la pega de proporcionar un espacio limitado para aislamiento y aireación cuando se usan pares de 2x10 ó 2x12. Usando cerchas simples se permite un espacio bajo techado para un mejor aislamiento.

Hay que tomar precauciones extra cuando se utiliza el tejado a un agua con muros de carga de fardos. Las diferentes alturas de muro requeridas para la pendiente del tejado a un agua no proporcionan una superficie de perímetro continua y regular, y el empuje de los pares al muro de carga más bajo durante la construcción puede provocar que se incline. Un poco de cuidado y un refuerzo o apuntalamiento, si es necesario, es generalmente suficiente para mantener los muros rectos (aplomados). Como en el caso del tejado a dos aguas, hay que recortar los fardos para adaptarlos y encajarlos en la pendiente de los muros que no soportan carga.

Se pueden utilizar vigas de celosía (cerchas con cordones paralelos) en vez de pares de gran sección. Además de ser fáciles de montar y de un costo apropiado, están disponibles en medidas superiores a 2x12, que permiten una buena aireación y aislamiento.

Las vigas de celosía o vigas en 1, que se forman con una hoja vertical de contrachapado, se pueden utilizar de la misma manera. Se comercializan en una variedad de anchuras y profundidades desde 9 1/2 hasta 16 pulgadas. Son ligeras y fáciles de montar. Una viga de celosía de 16 pulgadas de profundidad puede salvar una distancia de 30 pies (consultar la tabla de características para cargas máximas permitidas). Ofrecen las mismas características y ventajas que las cerchas de cordones paralelos. Hay que tener cuidado de no superar la capacidad de carga del muro de fardos cuando se utilizan muros de paja.

Se pueden construir tejados a un agua de manera que dejen un espacio bajo tejado sobre un techo (interior) plano. Hay una gran cantidad de ventajas utilizando esta solución. Los muros pueden ser de la misma altura y definen una superficie de apoyo continua. El espacio adicional (bajo cubierta) se puede entonces aislara y ventilar.

La casa de Steve y Nena MacDonald en Gila, Nuevo México, utiliza troncos pelados (descortezados) o vigas para salvar la distancia (luz) entre muros. Steve situó un tejado a un agua sobre esta superficie horizontal. El espacio resultante entre el techo y el tejado fue super-aislado y ventilado. Las
cerchas de 2x4 formando un tejado inclinado probablemente constituyen uno de los más prácticos y económicos para hacer un tejado de un agua.

TEJADO CLERESTORIO

Los tejados de este tipo son, básicamente, dos tejados a un agua combinados, uno en pendiente hacia atrás, más pronunciado, y el otro más bajo, con pendiente menor y hacia adelante. Estos tejados tienen un lugar prominente en edificios bioclimaticos, y también han sido utilizados en construcciones de paja. Permiten una ganancia solar directa en las habitaciones situadas en la parte norte de la casa, lo que, en muchas ocasiones, puede minimizar el tamaño o la necesidad de sistemas de calefacción e iluminación. En las zonas como el sudoeste de los Estados Unidos, donde el sol del invierno es bastante intenso, este tipo de estructuras de tejado pueden ser muy efectivas.

Steve Kemble ha construido tres casas de paja utilizando tejados clerestorio. Le gusta aplicarlo en diseños solares en que el edificio tiene una gran profundidad norte-sur, y cree que la mejor utilización es en

![Imagen de casa con tejado clerestorio](image)

conjunción con algún tipo de esqueleto estructural, tipo viga y poste, utilizando los fardos de paja como relleno. Su casa en Bisbee usaba un diseño híbrido en el cual el clerestorio central fue construido mediante poste y vigas, mientras que el muro de atrás era de carga. Considerado a posteriori, podría haber construido toda la estructura como poste y viga, considerando el poco trabajo necesario para poner postes en el muro trasero. El espacio de 20 pies de la sección posterior del tejado ejercía mucho empuje en el
muro trasero y requería algún esfuerzo para recolocar la pared a plomo. El clerestorio también se puede utilizar en un sistema de cerchas para reducir las cargas de empuje.

TEJADOS PLANOS Y ANTEPECHOS

Para no llevar a confusión, los tejados planos no son tales, sino que llevan una pequeña pendiente (menor que en un tejado inclinado). Tienen mala reputación, ya que crean más frecuentemente goteras debido a la pendiente inferior, pero mucho de su mal resultado es achacable a los materiales utilizados y a una mano de obra no cualificada. De todos modos, son más apropiadas para climas poco lluviosos y mínimas cargas de nieve.

Tradicionalmente, los tejados planos de los indios Pueblo y otras culturas del sudoeste utilizaban troncos pelados como vigas, ramaje más pequeño, latilla, descansaba sobre ellos formando el techo y con múltiples capas de material arcilloso rematando el conjunto. A menudo, en la capa superior se desarrollaba la hierba y, en algunos casos, se plantaban melones y calabazas en el tejado, dejando que rebosasen por los bordes o laterales de la construcción. Estos tejados eran pesados, requerían largas vigas y, a menudo, se provocaban goteras durante largos períodos de lluvias. Sin embargo, eran térmicamente eficaces, baratos y proporcionaban un espacio para vivir adicional para una gran variedad de usos, incluyendo el sueño veraniego, la cocina y el secado de comida. Una versión moderna de este tejado, utilizada en México, incorpora una capa impermeabilizante en la parte superior del techo antes de aplicar el barro. El cemento para suelos se usa en lugar del barro y se luce.

Los tejados planos se diseñan, a menudo, con parapetos, o pequeños muros verticales que se prolongan por encima de la línea del tejado. Dichos parapetos pueden ser en dos, tres o todas las caras del tejado. Sirven como base contra la cual rematar un tejado plano. También sirven como punto de anclaje para los vierteaguas. Los parapetos pueden variar de lo más sencillo hasta lo más elaborado y ornamental. Tradicionalmente, el ‘estilo parapeto estaba unido a creencias espirituales. En los “pueblos”
eran utilizados a menudo para “reproducir formas del paisaje natural”. En Arabia eran utilizados para conectar el edificio con el cielo.

Los parapetos de tejado, que una vez fueron de adobe, han sido ahora construidos de cualquier material, desde fardos de paja recubiertos de una capa anti-humedad, pasando por estructuras de armazón, hasta de hormigón ligero a base de piedra pómez. La normativa de Nuevo México para la construcción con fardos de paja permite que éstos se puedan utilizar en parapetos siempre que no sobresalgan dos alturas. Se deben unir, pinchar entre ellos con barras metálicas verticales y deben tener un recubrimiento continuo a base de mortero. También requieren una impermeabilización continua que, partiendo de la cubierta, recoja y cubra hasta el otro lado del parapeto con un mínimo de 2 y un máximo de 6 pulgadas.

Una zona conflictiva y potencialmente generadora de goteras es allí donde arrancan los vierteaguas de los tejados planos. Debido a que estos drenajes de tejado pasan a través del muro, necesitan ser diseñados y construidos cuidadosamente, de tal manera que no provoquen goteras en el lugar donde se juntan el tejado, el parapeto y el vierteaguas. Una solución es tener parapetos en tres lados y la pendiente del tejado hacia el cuarto lado.

En México, los tejados de hormigón son muy comunes. El arquitecto Bill Cook utilizó para el tejado vigas preformadas de celosía. Cree que las celosías solucionan muchos problemas potenciales de los tejados planos producto de la deformación y torsión de las piezas largas de madera de una pieza, como las vigas. Los tejados planos permiten ser pintados de blanco reflectante (bueno para climas calurosos) y es sencillo trabajar en ellos. Su tejado tiene una caída (pendiente) de 1/4 de pulgada por pie (0,65 cm. x 33 cm. más o menos 1,5%), lo que cree que es absolutamente el mínimo, y está recubierto con una tela elastomérica, que aumenta gradualmente la vida del tejado y, además, protege de la humedad, Cook armó sus parapetos con una estructura de madera en lo alto del muro de fardos de paja.

Donde el espacio es limitado, los tejados planos pueden servir como impagable espacio habitable y, en algunos casos, incluso un espacio para producir alimentos. Una combinación de estilos de tejados puede proporcionar ventajas en grandes estructuras. Las secciones pequeñas del tejado, como los dormitorios, pueden disponer de tejados planos utilizados además para comedor o lugar de descanso.

TEJADO VIVO

Los tejados de paja son más corrientes en climas húmedos como el de las Islas Británicas, el norte de Francia y Holanda. Los tejados de tierra son más apropiados para climas desérticos como los de los países mediterráneos, y la parte sudoeste de los Estados Unidos y Australia.

Necesitábamos algo que respondiese a regiones que tienen tormentas de nieve, veranos cálidos y temperaturas extremas. También queríamos trabajar con un recurso renovable que pudiera ser
reemplazado o arreglado fácilmente y con un coste pequeño. La idea de un tejado vivo nos fascinó también por su potencial creativo. Los tejados vivos pueden llevar un simple acabado de césped o convertirse en un complejo jardín con bulbos y flores silvestres. De hecho, uno de los acabados que sugerimos es con fresas, ya que producen fuertes y profundos sistemas de raíces que ayudan a mantener alto el nivel de humedad de la tierra.

IMPERMEABILIZACIÓN

La pendiente en nuestros tejados vivos suele ser mínima, son casi planos; de todas maneras, pueden tener una pendiente de unas 6 a 8 pulgadas por pie. Hay que poner una membrana impermeabilizante entre la superficie del tejado y la vegetación.

Actualmente, usamos membranas de betún modificadas con una base de polímero. Materiales tales como arcilla de “montmorillonite” (Bentonite), Volcay, membranas de pvc y Bitutene son satisfactorios, de hecho, cualquier membrana impermeabilizante de refuerzo funcionará. Nosotros hemos tenido muy buenos resultados con una membrana llamada Armorplast, hecha por IKO. Este tipo de membrana se funde en las junturas, creando una membrana única cuando todo el tejado está terminado.

Hay que tener cuidado de asegurarse de que el tejado drena y vierte la humedad. Los bordes del tejado se rematan con un parapeto. La membrana se solapa en parte subiendo por esas paredes para mantenerlas secas. El desagüe se dirige entonces a la parte baja de la pendiente o a las esquinas y después a los canalones.

ACABADO DEL TEJADO

La idea presente detrás del tejado vivo es que se utilice la paja como base para el abono compuesto que finalmente se formará para mantener las plantas y flores que instalaremos como residentes permanentes. En tejados grandes, simplemente tumbamos los fardos en horizontal (con las cuerdas hacia arriba) sobre todo el tejado, dejando un espacio de 3 a 4 pies en el borde. En ese espacio, usamos copos de paja para, gradualmente, rematar el tejado en punta. Este área suele corresponder con el final del alero.

En este punto, cortamos todas las cuerdas para que los fardos empiecen a deshacerse. Creemos que, las dos primeras estaciones, como invierno y primavera, debería dejarse el tejado evolucionar por sí mismo. Después de unos pocos meses, la paja empezará a estabilizarse (y encoger) y mantendrá la cantidad de humedad mínima necesaria para mantener las plantas. Entonces, se puede esparcir un par de pulgadas de viejo abono compuesto o estiércol sobre el tejado durante las primeras semanas para asegurarse de que germinan. Dependerá del clima local.

Un tejado vivo prácticamente no necesita cuidados, solamente arrancar las hierbas de vez en cuando.
Creemos que un tejado vivo es adecuado para casas de una sola planta, para superficies pequeñas, y, desde luego, encima de cobertizos, talleres y construcciones similares. No creemos que sea una buena idea instalar un tejado vivo sobre un edificio de dos plantas. Suelen estar demasiado altos para poder apreciarlos y están demasiado fuera de alcance para su mantenimiento regular.

BÓVEDAS Y CÚPULAS

Puesto que los fardos se comprimen, hay que prestar especial consideración a los diseños que intentan usarlos como estructuras en bóvedas y cúpulas. También hay que tener cuidado con su capacidad para derrumbarse. Es esencial una buena protección exterior contra la humedad, ya que las fuertes lluvias y la nieve incrementan esa posibilidad.

La forma larga y rectangular de los fardos también presenta un desafío por el tamaño de los espacios vacíos triangulares que se crean cuando los fardos se colocan a lo largo de un arco. Estos espacios vacíos pueden rellenarse con paja suelta recubierta de arcilla u otro material. Los fardos pequeños reatados y biselados también pueden ser usados con mortero de barro para colocarlos en los espacios.

Sería posible rellenarlos con trapos o bolsas de harpilla llenas de paja suelta, recubiertas por una fina capa de arcilla, e insertarlos formando una estructura. Nader Khalili ha construido con éxito bóvedas y cúpulas con sacos de arena llenos de tierra húmeda.

Bili y Athena Steen construyeron una cúpula de paja temporal usando los fardos como estructura sin un armazón de soporte. La cúpula tenía 15 pies de diámetro. Para ir cerrando la cúpula, las filas de arriba de fardos fueron inclinadas hacia adentro metiendo copos de paja bajo los fardos en su borde exterior. Según aumentaban las filas se descubrió que es importante inclinar los fardos sólo ligeramente, de otra manera, era difícil situarlos y mantenerlos en su lugar. Además, los fardos de las filas superiores fueron cortados y metidos en ángulo en las esquinas para que se superpusiesen unos sobre otros. Esto dio peores resultados que dejar los fardos en su forma rectangular, porque los fardos tendían a deslizarse del círculo por la falta de un punto de compresión que los fardos rectangulares forman en las esquinas.
Se pueden construir cúpulas y bóvedas para estructuras de fardos usando un doble armazón estructural de bambú, tubo o varas flexibles, cubiertos con una capa de protección climática. El espacio entre las dos capas podría ser rellenado con bolsas de paja o fardos para conseguir aislamiento. También se podrían construir bóvedas usando un entramado con cuerdas curvadas en su parte superior hechas de bambú u otro material apropiado.

TEJADOS DE PAJA

Algunos de los mejores materiales para tejados de paja son la paja y la hierba, apropiados para edificios que tienen paredes de los mismos materiales renovables. Algunas variedades, particularmente las de tallos largos y rígidos, pueden durar cincuenta años o más en el tejado si se trabajan cuidadosamente. Centeno, trigo, arroz, y la paja de otros cereales también son apropiados para este trabajo.

Las modernas segadoras-trilladoras hacen inservible la paja de los cereales para ser utilizada como material para tejados porque la aplastan y parten los tallos convirtiéndolos en montones de cabos y puntas entremezclados. El extremo es la parte del tallo más resistente al clima, y los haces para poner techo de paja deberían formarse con los extremos todos juntos. Una alternativa es usar paja segada con una agavilladora, que no destruye los tallos. Otra es usar trigo escardado, que se produce cuando el grano se separa de la paja escardándolo más que trillándolo. Al escardarlo, la paja permanece entera y orientada, con todos los extremos apuntando en la misma dirección.

ENTRAMADOS DE BAMBÚ

El bambú crece fácilmente en una gran variedad de condiciones. Como la paja, es un recurso renovable que puede ser cultivado de forma sostenible. Tiene una gran fuerza de tensión y se usa para reforzar el cemento en muchas áreas.

En algunas áreas, sin embargo, la siega de bambú está creando desastres ecológicos similares a la tala de bosques tropicales o de muchos años.

El bambú presenta algunas desventajas. Su duración natural es menor que la de la madera, y tiene que ser tratado con preservativos para que dure en sitios expuestos. Debido a su variedad de diámetros, no es apropiado para aplicaciones comerciales estandarizadas o a gran escala. Además, las junturas de bambú a menudo requieren tiempo extra y habilidades especiales.

En la Iglesia Metodista de México, cerca de Puebla, México, se usaron entramados de bambú junto con un edificio de fardos de paja. Los entramados estaban coronados por una sección transversal de junco de carrizo (una hierba como el bambú), fieltro de tejado, varias pulgadas de tierra, y acabado con tejas de arcilla.
Hay que tener cierto cuidado para evitar que el bambú se convierta en una semilla invasora, ya que puede suplantar a los árboles y vegetación autóctonos si se le permite crecer sin restricción.

ENTRAMADOS DE METAL

Los tejados hechos de armazones de acero galvanizado de bajo calibre son apropiados para edificios de fardos. Los entramados de metal pueden ser previamente construidos o manufacturados en el mismo lugar. Son ligeros y capaces de abarcar grandes distancias sin soportes centrales, lo que les convierte en buenos candidatos estructurales para edificios grandes y graneros. Pueden ser conectados con tirantes de huracán (pequeñas placas para reforzar junturas) a las placas de tejado de madera o metal.

PORCHES Y BUHARDILLAS

Los tejados a cuatro aguas, piramidales y a dos aguas son apropiados para que se les añadan porches y buhardillas. Las líneas del tejado pueden extenderse fácilmente para crear porches parciales o completos alrededor. Los porches dan mayor protección a las paredes de fardos contra la humedad y el clima en general.

Cuando se añaden buhardillas para crear un espacio útil en el ático, hay que tener en cuenta todos los aspectos concernientes al diseño de una segunda planta, como son las cargas adicionales impuestas sobre los muros por la estructura del piso, el mobiliario y los ocupantes.

En estructuras que usan muros de carga de fardos, se necesita un método para añadir porches a no ser que el porche esté sujeto a los pares del alero. En el Tree of Life Rejuvenation Center se insertaron largos pernos en la pared de fardos para unir un antepecho de madera en el exterior del muro justo bajo el nivel del tejado. Grandes placas de metal, que servían como arandelas se utilizaron en el interior del muro para evitar que los pernos se incrustasen en el muro de fardos. El antepecho de madera también fue sujetado a la viga del tejado con perchas.
AISLAMIENTO DEL TEJADO

La mayoría de tejados de edificios de fardos modernos han usado fibra de vidrio como aislante para el tejado, pero estudios recientes sugieren que este tipo de aislamiento produce problemas de salud.

Una de las formas más fáciles y baratas de aislar el tejado es usar paja. Cuando el techo y la estructura del tejado tiene suficiente resistencia se han utilizado fardos enteros. También puede usarse paja suelta o copos. Matts Myhrman y Judy Knox usaron un interesante método. Con la instalación de cada sección de techo de láminas de roca, metieron paja suelta en bolsas de basura de plástico y las empujaron dentro del espacio sobre las láminas de roca y entre las vigas. Después, retiraron rápidamente las bolsas y dejaron la paja, que fue colocada en su sitio con una azada. Cuando llegaron a la última sección de láminas de roca, extendieron alambre entre las vigas para mantener los copos de paja en su sitio antes de instalar las láminas.

Ha habido muchas sugerencias respecto a la forma de proteger contra las llamas la paja suelta del ático o el aislamiento del tejado. Una de ellas es pulverizar la paja con una solución de bórax. En lugar de tratar la paja directamente, se pueden mojar bolsas de harpillera en bórax, dejar que se sequen y después rellenarlas de paja. Hay otros materiales retardadores de las llamas disponibles comercialmente, pero sería mejor evaluar su toxicidad antes de usarlos.
CAPÍTULO 9: SUELOS

Las casas de paja pueden utilizar prácticamente cualquier tipo de suelo. A menudo, el tipo más conveniente, por lo menos en los Estados Unidos, es el de bloques de hormigón, que se puede pintar, cubrir, enmoquetar o embaldosar. Sin embargo, puede ser frío en invierno si no se utiliza ningún tipo de aislamiento, a la vez que incómodo debido a su dureza. Los suelos de tierra o adobe son muy baratos y pueden tener suficiente durabilidad para uso doméstico, al menos en zonas de poco desgaste. Baldosas o ladrillos sobre arena suponen una buena opción en cuanto al costo y el resultado. Todos ellos tienen buenas propiedades térmicas. Esto es, almacenan calor o frescura, y ayudan a mantener uniforme la temperatura interior. Una posibilidad interesante podría ser el uso de algún hormigón ligero que fuera suficientemente duro para soportar el uso y asimismo suficientemente blando para que resulte cómodo al pisarlo. El suelo de madera es precioso, pero en una época en que la reducción de la madera en la edificación es imprescindible, nos parece una elección poco razonable.

Una buena estrategia es la de utilizar diferentes suelos a lo largo de la casa, para responder a las diferentes necesidades. Los materiales más duros, capaces de soportar un uso continuo, pueden utilizarse en áreas públicas, mientras que los más blandos y más caros pueden utilizarse en espacio más privados, los espacios íntimos.

La eficacia térmica de la mayoría de las casas en climas fríos puede mejorarse con aislamiento bajo el suelo para aumentar el perímetro de cimiento. El más utilizado para este propósito es la espuma rígida; en Francia se han utilizado también fardos y también lo ha hecho ArchiBio.

SUELOS DE HORMIGÓN

Si el camión de cemento viene a verter hormigón para los cimientos, es una buena idea aprovechar para verter un suelo de hormigón al mismo tiempo. Es rápido, duradero y de precio moderado. Se le puede dar diversos acabados y, cuando se utiliza con alfombras, es un suelo que da buen servicio. Se pueden mezclar diversos pigmentos al hormigón en el propio camión, y asegura un color uniforme que se extiende por toda la superficie. Durante el vertido, los pigmentos pueden esparcirse sobre la superficie dando un aspecto ligeramente jaspeado. También se puede tratar la pigmentación del hormigón una ver vertido sobre el suelo. Una de las mejores elecciones es un manchado de base ácida que da un acabado irregular. Así como el nitrato de hierro y el sulfato de hierro, que le proporciona preciosas sombras de marrón y naranja. Los suelos así pigmentados pueden encerarse o sellarse. Los pigmentos con base de aceite pueden mezclarse con aguarrás o con selladores de aceite que se impregnan dando color al suelo de hormigón.

Los suelos de hormigón pueden estamparse o marcarse en rayas para que parezcan baldosas,
ladrillos o losas de piedra utilizando cualquiera de los sistemas de estampación disponibles. Un modo interesante y económico de tratar un suelo de cemento es hacer con él pavesas o adoquines de 2x4, 1x4 y 1x2, y verter el cemento en ellos unos cuantos cada vez. Es más lento que verter todo de una vez, pero puede hacerlo una persona utilizando una carretilla y diversos moldes. Las junturas pueden rellenarse con grava, piedras pequeñas o gravilla suelta. Es un suelo excelente para un invernadero, ya que, al mismo tiempo que aporta una superficie dura, proporciona un buen drenaje. Se puede conseguir una apariencia de suelo de piedra con adoquines de hormigón, extraídos de los moldes una vez vertido éste. Se envuelve el adoquín con una bolsa de plástico y se le da una forma redondeada a mano.

Al pasarles un poco con la paleta una vez que se hayan secado, les da un acabado suave Posteriormente se les da una capa de base ácida o nitrato de hierro para realzar el aspecto de piedra. El hormigón también es buena base para baldosas, otro tipo de adoquines, moqueta e incluso adobe.

El cemento de tierra es también adecuado para esta finalidad. Cuando se trata correctamente, el cemento de tierra hace una superficie muy dura. Según el criterio del ingeniero retirado Franklin Doc Vaudham, un defensor de toda la vida del cemento de tierra, el truco está en usar el tipo de tierra adecuado con el porcentaje adecuado de cemento. Las tierras muy arcillosas, o tierra vegetal oscura, no sirven. Tierras con un moderado componente arcilloso necesitan un 12 ó 13% de mezcla de cemento, mientras que las tierras arenosas, o de grava, necesitan menos, les basta con un 10%.

Piedras pulidas, conchas u otros objetos pueden incrustarse en el hormigón para darle un aspecto atractivo. Siempre con cuidado de que no sobresalgan en punta y supongan un peligro de tropezarse y caer. Otro efecto estético es añadir hojas para que queden impresas en el hormigón cuando está a punto de raseo, dando unas figuras con poco relieve sobre la superficie. Así se hizo dando un efecto muy bonito en el exterior del Tree of Life Nursery en el sur de California.

FARDOS DE PAJA Y BLOQUES DE HORMIGÓN

El grupo ArchiBio opina de este modo en cuanto a construir suelos de hormigón sin refuerzo de acero:

- Una de las grandes cualidades de la paja es su capacidad de aislamiento. Además la paja es como un bambú en miniatura y tiene cualidades de refuerzo que no pueden despreciarse. La paja suelta o troceada se utiliza como reafirmado con gran número de materiales de construcción, que van desde el barro al hormigón.

- ArchiBio funciona en climas fríos, en el este de Canadá, donde los inviernos son largos y duros. El suelo de losas de hormigón tiene mala fama porque opera como un foco de calor y humedad. Una losa puede ser fría e incómoda por mucho, mucho tiempo.
Dado que los fardos pueden utilizarse en las paredes para proporcionar un buen aislamiento, pensamos, ¿por qué no hacer lo mismo en el suelo? Al tiempo que decidimos intentar desarrollar un suelo de paja que no necesita refuerzo de acero, eliminando así el afecto Faraday, creado por la parrilla de refuerzo de acero, haciendo así una casa más ecológica para sus habitantes. A mediados de los 90, cuando el grupo ArchiBio comenzó a hacer investigación y pruebas, Michael Bergeron, uno de nuestros miembros, comenzó a utilizar paja troceada como sustituta de las varillas de hierro en las losas sobre el cimiento y posteriormente como reafirmante en los bloques de hormigón y paja.

Cuando se vaya a verter sobre un molde para hacer el bloque, los moldes tienen que tener por lo menos 20 pulgadas de altura, ya que los fardos son más o menos de 14 pulgadas cuando se ponen de lado. Hay que dejar 2 ó 3 pulgadas libres para verter el hormigón sobre y a los lados de los fardos.

Prepárese para ver la cara de los que manejan el camión de hormigón, al oir que quiere usted añadir paja troceada para reforzar la mezcla. Ya que el camión va a estar allí, le vendrá bien aprovechar esa ventaja para mezclar el hormigón y la paja a conciencia. Añadimos un fardo por cada 3 yardas cúbicas de hormigón. Necesitará la cooperación de otros amigos o trabajadores para esta operación, ya que los camiones son altos y los fardos pesados. Una buena forma de cortar la paja rápidamente, es cortar a lo largo de las cuerdas de los fardos con dos sierras mecánicas y entonces cortar las cuerdas. La paja añadida va a absorber gran cantidad de agua, así que tendrá que avisar al operario que vaya añadiendo agua a medida que hace la mezcla. Añadir lo justo para que pueda verterse, ya que demasiada agua emblandece el hormigón.

Cuando la mezcla está lista, se vierte el hormigón reafirmado con paja. El primer vertido debería ser de 2 ó 3 pulgadas de profundidad. Inmediatamente después de haber vertido el hormigón y haberlo rascado, se procede a cubrir la superficie totalmente con fardos de paja, dejando aproximadamente 2 ó 3 pulgadas libres alrededor de’ cada fardo, quizás 4 pulgadas para el trayecto cercano a los moldes.

La siguiente parte del suelo es la más delicada de toda la operación. Se vuelve a mezclar la paja con el cemento en el camión, pero esta vez hará falta un 25% más de hormigón que para el primer vertido. Ambos vertidos pueden hacerse el mismo día.
• La mezcla de hormigón y paja se vierte alrededor de los fardos, creando una red como de panal de abejas. El hormigón debe verterse cuidadosamente sobre los fardos para que rebose por los lados. De lo contrario, los fardos se moverán y se deslizarán sobre los lados. También se puede utilizar pequeñas láminas de contrachapado encima de los fardos sobre las que verter el hormigón. Tómalo con calma y vierte el hormigón despacio. Esta parte es crucial y debe hacerse correctamente, ya que es en esta operación en la que los bloques consiguen su fuerza y capacidad de aislamiento. Se para el vertido cuando el hormigón llega a la altura de arriba de los fardos. Una o dos pulgadas por debajo es lo ideal.

• Al día siguiente, o cuando se haya asentado el primer vertido, se vierte la capa de superficie. Esta vez no se le añade paja a la mezcla, ya que dificulta el acabado del bloque, sobre todo si se hace el acabado mecánicamente, debido a que sobresaldrán hebras de la paja. Una densidad alta de 4000 psi en la mezcla es lo mejor para un bloque bien acabado y cubierto. Debe utilizarse hormigón habitual, sin paja en los lugares en los que hayan de levantarse las chimeneas, o en las zonas que requieran una base estructural sólida.

• Este bloque necesitará un 20 ó 30% más de hormigón que el vertido habitual de 6 pulgadas, pero el resultado es un bloque sólido y con un sobre aislamiento que dará buen resultado doce meses al año. Es una buena inversión para el resultado que se consigue.

• Nuestra experiencia demuestra que estos bloques de fardos de paja son fantásticos. Dan un buen resultado y son eficaces y fuertes y, como la paja está totalmente cubierta de hormigón, no se pudre. Cuando todos los rincones de la casa están aislados uniformemente, el bloque no va a ser un foco de humedad o incomodidad.

Nota del autor: Para más información sobre el bloque de hormigón y paja, contactar con ArchiBio.

SUELOS DE BARRO

Los suelos de barro son los más viejos de la historia, y se han utilizado en todo el mundo. En el sudoeste de Estados Unidos, los suelos de tierra vertida o adobe eran la norma, anteriores a la utilización de madera, ladrillo u hormigón en los suelos. Pueden ser bonitos, suaves y cálidos, y cuando se realizan con un buen acabado y un buen tratamiento de superficie, resultan unos suelos cómodos, prácticos y de aspecto natural. Ya que normalmente se puede utilizar la tierra del sitio, y el nivel de pericia requerido es mínimo, los suelos de barro son económicos, casi salen gratis.

En el sudoeste, se está produciendo una vuelta a los suelos de barro. Se han utilizado tanto en
casas muy caras como en estructuras más sencillas en las que los materiales, pericia y financiación son más limitados.

Plantas del Sudoeste, unos invernaderos de Santa Fe, utilizaron suelos de barro para el edificio principal de atención al público.

Las fórmulas concretas de suelos de barro varían según los materiales disponibles, tradiciones culturales y preferencias individuales. La mayoría de los suelos de adobe son más frágiles que otros suelos en los que se utilizan materiales de construcción.

Se pueden agrietar y necesitan repararse de vez en cuando. Sin embargo, dependiendo de la mezcla y del proceso de construcción, pueden ser fuertes, duraderos y sin que requieran especial cuidado o mantenimiento.

Hay muchas maneras de construir un suelo de barro. Si se quiere realizar el proceso sin experiencia anterior, hará falta cierta pericia. Hay expertos en este tipo de suelos a los que se puede consultar, entre ellos, Anita Rodríguez de Taos, Nuevo Méjico y Robert Laporte de Fairfield, Iowa. El punto de vista de Anita proviene de la tradición Enjarradora del Nuevo México hispano, en la que corre a cargo de las mujeres la construcción y mantenimiento de los suelos de adobe. El punto de vista de Robert LaPorte proviene de la tradición europea de construcción con barro.

Aquí se especifican los pasos básicos para la construcción de suelos de barro, extraídos de diferentes tradiciones y constructores.

Los suelos de barro son de buena calidad y pueden utilizarse prácticamente en todo clima. El requisito esencial es que el suelo cuente con buen drenaje y no tenga problemas de humedad. Deben analizarse las características del suelo, la pendiente, la exposición y la precipitación. En climas secos, ha existido la tradición de colocar bloques de barro sobre un sub-cimiento no preparado, 3 ó 4 pulgadas por debajo del nivel del suelo acabado. En climas más fríos o más húmedos, se necesita una preparación más intensiva de los cimientos, como se hacía en los países del este europeo. Se necesita un cimiento de 12 a 18 pulgadas. Se pueden trazar marcas de tiza alrededor de las paredes para marcar la altura del suelo acabado.

Tiene que eliminarse todo material orgánico, y es buena idea dar una forma al área central 2 ó 3 pulgadas por encima del perímetro para asegurar un buen drenaje. Se utiliza entonces una base porosa a 6 a 12 pulgadas de profundidad de piedra de 1 a 3 pulgadas, prensada a mano o mecánicamente. En otros lugares, en los que el problema de la humedad no es tan agudo, bastará una capa de arena de varias pulgadas en lugar de la piedra. Se pueden poner materiales aislantes contra la humedad como preparación del subsuelo, pero con ello se sacrifica la transpirabilidad del suelo.

En caso de colocarse una base de piedra, se debe interponer algún tipo de capa protectora para evitar que los niveles superiores de material de tierra se deslicen y ocupen los espacios de relleno entre las
piedras, privando así al suelo de sus propiedades de resistencia a la humedad y capacidad de aislamiento. Un método, utilizado por Robert Laporte, es la aplicación de 2 ó 3 pulgadas de paja de trigo cubiertas de una capa de arcilla (una mezcla ligera de arcilla y agua) y compactar la mezcla en una capa de 1/2 a 3/4 de pulgada. La capa protectora ideal tiene suficiente cuerpo y textura, resiste el envejecimiento y acepta una capa de arcilla.

Normalmente, se utiliza un sub-suelo entre la base y el suelo propiamente dicho. Es habitual una mezcla arenosa-sedimentos de tierra batida compactada en 1 ó 2 pulgadas. Una buena proporción sería de un 50% de arena. Si se va a instalar un sistema de calefacción con radiadores, las tuberías de plástico deben colocarse sobre el sub-suelo. Este sub-suelo puede valer también de suelo temporal durante el proceso de construcción. Hay varias maneras de preparar la mezcla de barro para el suelo definitivo. En el sur de Estados Unidos y México, se utilizaban tradicionalmente suelos que contuvieran un máximo del 35% de arcilla. Una proporción de 80% de agregado por un 20% de arcilla y sedimento se consideraba ideal. En la tradición europea se da una mezcla de 5 partes de arena por una con consistencia lechosa de arcilla semi-liquida hecha de tierra que es arcillosa al 50%. La antigua vasija del albañil es una buena prueba para evaluar las propiedades de la tierra. Se necesita una jarra de cristal llena de tierra en 2/3 y 1/3 de agua. Se añaden dos cucharillas de sal, que ayudará a que se sedimenten las arcillas. Agitar el contenido y dejar en reposo de 4 a 8 horas, La arena se depositará al fondo, a continuación el sedimento y la arcilla en la parte superior, de modo que se pueden apreciar a la vista la proporción de cada uno de los contenidos.

La resistencia del suelo está en el agregado, mientras que la arcilla y el sedimento son los aglomerantes. Para dar una resistencia extra al suelo, se suelen añadir diversas sustancias. Tradicionalmente, los suelos del sudoeste y de México se solían mezclar con diversas combinaciones de estiércol y sangre. En la casa de Bob Munk en Santa Fe, el constructor Max Aragón utilizó una mezcla de 1 parte de sangre seca y estiércol por 2 partes de tierra para el suelo de adobe. La harina de sangre seca puede adquirirse en cualquiera de los proveedores de compuestos de tierra y fertilizantes. En algunos suelos tradicionales se ha añadido paja para evitar que se encoja y minimizar el riego de agrietamiento. También se puede utilizar cemento de tierra añadiendo un 10% de cemento a un suelo arenoso y de gravilla, y en un 12 a 13% a los suelos altamente arcillosos. También se utilizaba la pasta de trigo en una proporción aproximada de una libra por cada 10 pies cuadrados. Otros productos, como el cemento blanco, se han utilizado con éxito en suelos de barro en una proporción de aproximadamente un cuarto de galán (1,136 litros) por cada 10 pies cuadrados. El gel producido con la cocción del higo de la chumbaera o la cholla también puede funcionar.

La cantidad de agua que se añade a la mezcla de tierra varía desde nada de agua, instalando la mezcla seca para ser prensada, a muy húmeda, en cuyo caso se vierte, y se deja secar. En el vivero de
Plants of the Southwest se utilizó un prensador seco para compactarlo mecánicamente y después impermeabilizarlo con aceite de linaza hervido.

Otras mezclas usan una base ligeramente húmeda que posteriormente se apisona. La mezcla debe ser suficientemente húmeda para que cuando se estruje, se amalgame y se pegue sin que suelte agua, al tiempo que tiene que ser suficientemente húmeda como para que pueda verterse. La tierra sedimentada utilizada para el suelo no hay que tamizarla. La mezcla del barro se hace en una carretilla o en una hormigonera y después se vierte y se iguala al nivel requerido.

Uno de los métodos más divertidos es mezclar el barro en el propio lugar. Se llena la habitación de la mezcla de barro seco, se añade agua con una manguera, y todo el mundo -amigos y niños incluidos- ayuda a mezclar el suelo utilizando los pies descalzos y las manos.

Si se va a cubrir el suelo de una fina capa de cemento, de 2 a 4 pulgadas, o se va a asentar algún otro material apropiado antes del vertido, no hay unanimidad en cuanto al grosor que debe tener el suelo. La profundidad más habitual es de 3 a 4 pulgadas.

Se puede utilizar el nivel para mejorar la construcción del suelo, marcando con tiza en las paredes para conseguir un igualado perfecto. Se puede verter poco a poco y así nivelar y apisonar gradualmente.

El paso final consiste en apisonar y compactar el suelo, que puede hacerse con un instrumento de fabricación casera, consistente en una pieza de conglomerado y un montante de 2x4, o cualquier instrumento que sirva para comprimir el hormigón. Los que se venden tienen la ventaja de que la parte superior es de alambre y así puede salir por ahí el exceso de agua.

Nota: Lo ideal es realizar el vertido en la temporada más seca del año. Maduran por evaporación y necesitan un tiempo, que va desde 10 días hasta 6 semanas, dependiendo de las condiciones climáticas.

Se puede instalar una parrilla de 2x4 yardas a través del suelo antes de realizar el vertido, como se suele hacer con suelos de hormigón. Se pueden rellenar una a una y nivelar el hormigón al mismo tiempo. También se pueden hacer grandes adoquines de barro, en moldes transportables que pueden posteriormente enlechados con barros de diferentes colores para conseguir un suelo estampado.

Si se utiliza un mezclador en seco, el bloque suele ser más grueso que cuando se hace por vertido. El aplastamiento se puede hacer a mano o con un aplastado de hormigón ordinario. Cuando el suelo es lo suficientemente seco como para aguantar pesos, se puede allanar con la ayuda de planchas bajo las rodillas. Basta un par de cuadros de conglomerado aceitado de 18 pulgadas y moviéndose en tandem. Otra posibilidad es cortar surcos sobre el suelo, que ayuda a controlar el agrietado y parece que el suelo está cubierto de adoquines de adobe. En la casa Noland de Long Pine en California, se utilizó esta técnica.

A medida que los suelos de barro se curan, esto es, se secan, lo más probable es que se agrieten. Un adoquín mojado de barro puede encogerse hasta 1/2 pulgada, dependiendo del grosor, cantidad de arcilla y cantidad de agua utilizadas. Estas grietas que se forman pueden ir rellenándose sin más, o se
pueden ensanchar ligeramente para rellenarlas con barro de diferentes colores (se pueden utilizar pigmentos), que le van a dar un aspecto de suelo de losa de piedra. La mezcla de tierra hay que pasarla por un cedazo de 1/8 de pulgada y mezclarla con agua. La mezcla entonces se vierte fácilmente con una simple lata de café o con las bolsas de lechado que utilizan los albañiles.

Una técnica distinta, diferente al relleno de las grietas, es extender por todo el suelo un acabado de tierra tamizada. Se puede utilizar una tierra coloreada para esta capa final, que añadirá belleza al suelo. En la tradición europea, se ha utilizado una mezcla de 3 partes de arena por una de arcilla lechosa compuesta de tierra arcillosa al 50% con 0,1 % de aceite. Esta capa se aplica normalmente con un grosor de 1/2 pulgada. Si esta capa también sufre de grietas, se añade otra capa aún más fina. La mayoría de los suelos de barro se suelen verter en dos o tres capas.

El paso final es añadir un endurecedor para el suelo acabado. Sin algún tipo de endurecedor el suelo de adobe no resistirá el uso intensivo ni resistirá la humedad. Lo que se utiliza normalmente es aceite de linaza hervido en combinación con aguarrás o disolvente de pinturas. Resulta ser barato y fiable como sistema. Normalmente, se aplican dos capas utilizando una mezcla de una parte de disolvente o aguarrás y una parte de aceite de linaza hervido, dejando que la primera capa se seque completamente antes de aplicar la segunda. Una tercera y última capa de 3 partes de aceite de linaza por una parte de aguarrás o disolvente finalizará el proceso. La forma más sencilla de aplicar las capas es un rodillo de pintura, utilizando un cepillo para las esquinas. En algunos casos se ha utilizado aceite de linaza de gran pureza para la primera capa, seguido de una mezcla de una parte por otra de aguarrás para la segunda y tercera capa. También se utiliza endurecedor de suelo de cheurón así como selladores o siliconas de adobe y albañilería.

Existen en la actualidad una variedad de disolventes basados en cítricos que, aunque son más caros, dan un buen resultado y son menos tóxicos que los disolventes de pintura. Una empresa que se llama Bioshield fabrica un producto excelente llamado Impermeabilizante de aceite penetrante, que consiste en aceite de linaza hervido, aceites herbales y secador sin plomo. A granel, cuesta más o menos el doble que las mezclas convencionales de linaza y disolvente, pero el hecho de que no sea tóxico nos inclina a creer que merece la pena el coste extra.

Se han encontrado suelos de barro de varios miles de años de antigüedad, emplastados en lo que parece ser una mezcla de caliza, en muy buen estado en yacimientos del Oriente Medio. Una pasta de caliza o yeso duro tipo Red Top Hardwall o Imperial puede aportar a un suelo de barro una capa suficientemente dura si se sella bien. Ya que esas pastas son de color neutro o blanco se pueden teñir de cualquier color antes de sellarlo. Una capa fina de masa de cemento también puede utilizarse en combinación con masilla de albañilería. Max Aragon aplicó en algunos de los suelos de adobe de Munk una capa final de pasta de estructolite mezclada con harina de maíz para darle firmeza, color y textura.
Por último, el suelo puede encerarse con cera normal para suelos o cera de abeja para una protección superior.

En cuanto salga una grieta, se ablande el suelo o salten pequeños pedacitos debido al uso, si no se repara a tiempo, el agujero se agranda hasta hacer un bache. La reparación, si hiciera falta; es sencilla. Se añade nueva mezcla de barro (para ello es buena idea apartar parte del barro utilizado durante la construcción para uso posterior), mezclada con agua, que se pega en el agujero a mano o con un rasero. Una vez que el barro se haya secado puede resellarse.

LADRILLO O BALDOSA SOBRE ARENA

El ladrillo y la baldosa han sido los materiales preferidos por muy diversas culturas a lo largo de la historia, y hay muy buenas razones para utilizarlos hoy en día. En la mayoría de los casos son fáciles de instalar y resultan suelos atractivos, duraderos y no muy caros. Forman además una masa térmica para edificios con recepción solar. Si los suelos de adobe pueden instalarse en zonas de poco uso, el ladrillo y la baldosa pueden utilizarse en aquellos lugares en que sea necesaria una superficie más sufrida. La utilización más económica consiste en colocarlas sobre una base de arena de pulgada y media, aproximadamente, en lugar de colocarlas sobre hormigón. Se venden parrillas de plástico para facilitar su colocación. Si se colocan bien unidas o con masilla bien colocada (lechadas) no se moverán en absoluto. Tablones de madera, piedra y bloques de construcción de paredes también sirven para este tipo de suelos.

Otra ventaja de los suelos de ladrillo o baldosa sobre arena es cuando se usa en conjunción con calefacción de radiadores bajo suelo, ya que es un suelo que se puede retirar y desmontar fácilmente si hubiera algún problema con el sistema de tuberías y necesitar reparación. Es una ventaja enorme sobre los sistemas de calefacción bajo suelo, cuando el suelo es de hormigón ya que exige un gran coste en demolición y reparación de suelo una vez reparado el sistema de calefacción.

Hay numerosos artículos y libros sobre la construcción de suelo de ladrillo o arena. La *Earrhbuilder’s Encyclopaedia* contiene un capítulo fácil de seguir sobre el tema.

SUELOS DE PIEDRA

La piedra plana, si se puede conseguir hace un buen suelo y muy hermoso. Es más fácil de colocar cuando va sobre arena. Los huecos entre las piedras pueden juntarse con arcilla y mortero de arena o mortero de cemento Portland. Gravilla suelta o cantos rodados de río pueden también utilizarse para rellenar los espacios entre las piedras si se requiere un buen drenaje, por ejemplo si fuera para un invernadero.
CALEFACCIÓN DE SUELO

El sistema de calefacción de suelo funciona haciendo pasar agua o aire caliente a través de un sistema de tubos de plástico o metal incrustados en hormigón, arena bajo suelo de ladrillo o el barro vertido en el caso de suelo de adobe. Pueden calentarse con energía solar, propano o electricidad. La gran preocupación es la posibilidad de que se produzcan fugas en el sistema de agua. Los sistemas antiguos de cobre o acero en las tuberías han sufrido fugas, pero los nuevos sistemas de plástico dan mejor resultado. Como ya se ha mencionado antes, en combinación con suelo de ladrillo sobre arena o adobe simplifica en gran medida el sistema de reparación si se produjeran fallos en las tuberías. El sistema de radiación bajo suelo como calefacción es muy cómodo, seguro y económico para casas de paja.

El sistema tradicional coreano, ondol, puede aportar una fuente extra de calor, extrayendo el calor que se produce en la cocina o estufas. Según este sistema; se hacen pasar tubos bajo el suelo provenientes de la cocina o aparatos de calefacción a todo lo largo de la casa hasta la chimenea que se pone en el lado opuesto de la casa, produciendo así calefacción bajo suelo. Se puede potenciar el ondol con aire caliente de producción solar desde recolectores o un invernadero con aire fresco en verano desde otras fuentes pasivas.

Una versión moderna de esta antigua técnica se consigue colocando bloques de albañilería con agujeros dentro. Los bloques se colocan inclinados en filas, de tal manera que el aire caliente obtenido de un colector puede impulsarse en un extremo para que circule a través de los agujeros hasta que se recoge en un colector de aire frío al otro extremo de la casa. El aire cálido calienta los bloques y la masa de encima. El suelo puede ser de hormigón, baldosa, ladrillo o adobe. Para más información sobre este tipo de suelo véase Fine Homebuilding’s Guide to Foundations andMasonry.
CAPITULO 10: ELEMENTOS DE INTERIOR

PAREDES EXTERIORES

Las paredes interiores pueden ser construidas con casi cualquier material, incluyendo los fardos de paja. Todas las maravillosas cualidades de los fardos como paredes externas, se pueden llevar también al interior de la casa. Es con las paredes internas con las que las personas tienen un contacto más diario. Las confortables y gruesas paredes de fardos argamasados pueden crear una sensación de tranquilidad y silencio. Sus cualidades de insonorización las hace ideales para habitaciones de música o de meditación, habitaciones de adolescentes, estudios de grabación y como tabique entre apartamentos.

Katherine Wells incorporó una pared interior de paja entre el salón y el dormitorio de su casa de Nuevo México para insonorizarla. La casa de Bob Munk, en Santa Fe, usa también fardos de paja en sus paredes interiores. Bill y Athena Steen usaron fardos para crear una pared divisoria de cuatro pies de alto, en su hogar en Canelo. Los tres fardos fueron tumbados sobre sus extremidades y se les añadió un adobe. Tumbar los fardos de canto puede ayudar a ahorrar espacio en el suelo interior.

La mayoría de las personas, incluso aquellas en hogares de fardo de paja, recurren a paredes de estructuras convencionales con cartón piedra para las paredes interiores, a menudo por la limitación del espacio interior. Las estructuras de las paredes interiores son construidas en fardos para construcciones tales como edificios convencionales, la principal diferencia está en el método de acoplamiento o unión donde la estructura encuentra las paredes de fardos. La forma usada para el “Árbol Centro Curativo de la Vida” fue usar largos tornillos introducidos entre las paredes de fardos desde fuera para conectar la estructura. Planchas reforzadas de cuatro pulgadas fueron usadas en la superficie exterior para prevenir las posibles fugas al apretar los fardos.

En los cimientos, el uso de paredes no comprimibles requiere una atención especial, o las paredes interiores pueden, inintencionadamente, convertirse en cimientos y en algún caso causar problemas en su colocación. El modo más sencillo de solucionar esto, para paredes interiores construidas, es dejar a las paredes interiores extenderse por el techo y sujetarlo al techo a través de clavos o tomillos encajados en agujeros, lo que permite movimiento vertical. Es criticable reconocer la posibilidad del movimiento vertical, y diseñar para acomodarla.

Otra opción para las paredes interiores es lo hecho en Inglaterra llamado sistema “pared fácil”, lo cual es una plancha de madera comprimida no estructural que tiene un grosor de entre 1 y 3,5 pulgadas. Los paneles comprimidos son revestidos de papel a ambos lados, preparados para terminar con la delgada argamasa y pintura. La corporación del desarrollo económico de Perriton en Texas está unido a una manufactura llevada por la Stramit International en los EE.UU.
Otros productos de plancha de paja son manufacturados en los EEUU. Las industrias de Meadowwood en Alabany, Oregón, hace paneles que van de 1/16 a 1 pulgada de grosor y usan una resma natural para tratar la paja.

Viene tratados con un barniz y pueden ser usados tal cual vienen. Con los diseños solares puede ser ventajoso construir muros interiores sin materiales de albañilería, tales como una manera de incluir masa térmica adicional en la estructura. Los muros de adobe dan buena consistencia. Obviamente, en zonas “desarrolladas” son más caras y llevan más tiempo que el cartón piedra, pero en áreas donde el suelo de arcilla está disponible, y la velocidad no es tan importante, son una buena alternativa para el uso de estructuras de fardos.

Una pared de adobe más simple puede ser construida usando sacos de arena, que se llenan con tierra húmeda. Se puede reforzar colocando tiras paralelas de alambre barbado entre las filas. Básicamente, este método es una forma rápida de hacer adobes en la pared usando sacos. Cuando la tierra se seca deja un ladrillo de adobe muy duro encajado en el saco que entonces puede ser cubierto con adobe corriente.

La paja que ha sido revestida con una capa fina de arcilla, puede ser también usada en paredes interiores, especialmente donde la paja y el suelo de arcilla están disponibles. Una desventaja, relacionada con lo anterior, es que las paredes construidas usando el método cob (de adobe) pueden tardar largo tiempo en secarse. Aunque la técnica todavía no ha sido probada, nos intriga la posibilidad de usar sacos de arena rellenados con una mezcla a partes iguales de arcilla y paja.

Ken Haggard, desarrolló un único método de edificación simple, paredes interiores de mucha masa. La pared usa una plancha de madera de 2x4 rellenada de sulfato ferroso. Anteriormente varias piezas de barra de refuerzo son colocadas dentro de la plancha y una simple plancha es colocada hacia arriba para sostener el hormigón húmedo. La superficie de la pared queda muy irregular, dejando todo al descubierto, pero hace una superficie de pared inusual y atractiva.

En una casa ecológica, preparada con estructura de fardos en Amarillo, Texas, Pliny Fisk desarrolló una pared interior que también servía como recipiente de calor puesta sobre la pared sur. Una cesta de alambre o gabion se llenó con roca para crear una pared. Ambos, alambre y roca, fueron dejados expuestos. La roca tiene cualidades de retención de calor excelentes, incluso el proceso de edificar una pared de piedra lleva mucho tiempo. Usar alambre para hacer muros, adaptados a las dimensiones deseadas, es un eficiente uso de esta vieja técnica. Jaulas de alambre a menudo utilizadas como almacén, son una forma conveniente de conectar secciones de alambre.

Una simple plancha de bambú, puede ser usada y después argamasada para formar un muro. Variaciones de esta técnica, son usadas en todo el mundo. Para este caso, casi cualquier fibra, así como paja u hojas de plantas centenarias, puede ser usadas para este tipo de pared.
La distribución eléctrica y de fontanería no tendrá diferencias en una casa de fardos de paja o en una convencional. Cuando un conductor o alambre eléctrico, tal como Romex o UF, se instalan en la pared, pueden ser colocados entre los fardos fijándolos en las paredes de piedra, o pueden fácilmente ser colocados entre los fardos con una barra más tarde.

Si el alambre necesita ser colocado en un lugar que no coincide con una junta, se puede hacer un canal o pasadizo atravesando la superficie del fardo con un alambre. Cualquier instrumento afilado será suficiente, pero las sierras de cadena son más comúnmente usadas con los fardos. Si desea un canal más profundo se puede hacer un agujero a través de una distancia desde el extremo de la barra que es igual a la profundidad del corte deseado. Un tornillo puede entonces ser insertado y asegurado en el agujero. Consecuentemente, cuando un canal es cortado en la pared, la barra de la cadena penetrará solamente según la profundidad del tornillo. Las sierras de cuchillas dobles se tienen que usar también para cortar canales uniformes. Los agujeros pueden ser taladrados a través de los fardos con un *auger* de madera. Las cajas eléctricas y la instalación de luz pueden ser sólidamente montadas colocándolas junto a estacas de madera introducidas en cavidades en los fardos. El extremo de la caja debería asentarse entre 1 y 1 1/2 pulgadas para terminar el emplaste revestido. Se ha de tener cuidado de dejar una holgura adecuada para cualquier combustible. Se puede echar o aplicar un retardador del fuego, tal como arcilla y borato detrás de las cajas de empalmes, luces y otras fuentes de calor para tranquilizar a los inspectores de edificios.

En general, es una sabia idea mantener la fontanería fuera de las paredes de fardos, ya que el agua es el principal enemigo de éstas; las tuberías se pueden romper y el agua puede condensarse en frías tuberías. La fontanería puede ir por las paredes interiores, debajo del suelo o revestido en redes delante de los fardos. Si una tubería debe ir atravesando las paredes, es mejor revestirla con una funda de plástico para posibles futuras averías. Es un tanto incomodo tener una tubería rota en una pared de fardo.

Cualquier canal eléctrico que haya sido cortado en las paredes de fardo, debe ser rellenado con cualquier tipo de relleno para cubrir el cable eléctrico si se va a usar cemento de estuco. La mayoría de los
códigos aclaran que los cables eléctricos no pueden entrar en contacto con el cemento. El aislante de fibra de vidrio ha sido usado satisfactoriamente y el emplaste de adobe o mezcla de arcilla y paja también puede funcionar.

LAS INFLUENCIAS ELECTROMAGNÉTICAS

Cuando instalamos el sistema eléctrico de la casa, hay muchas formas para minimizar los campos electromagnéticos, que pueden afectar adversamente al cuerpo humano creando estrés y debilitando las funciones del cuerpo. Por añadidura, a los campos electromagnéticos emitidos por aplicaciones electrónicas específicas, los campos son dañados por el alambre básico en un edificio. Los alambres retorcidos generan la mitad de campo eléctrico que el generado por los más habituales alambres paralelos. Los alambres eléctricos también incrementan el poder en una relación logarítmica con respecto a la distancia de la fuente. Dependiendo de la ubicación de la casa y la cantidad de tiempo en el que varios espacios serán ocupados, una o más de estas técnicas pueden ser usadas para reducir la influencia de los campos electromagnéticos.

Las paredes que rodean la cama son un área donde el alambrado debería ser mantenido a un mínimo de distancia o incluso prohibirse. Áreas tales como la cocina, oficinas, y áreas de entretenimiento pueden ser alimentadas con los alambres retorcidos conductores, para una reducción máxima. Un enchufe maestro previene cualquier corriente en los alambres de una habitación, mientras que un usuario no esté en la necesidad de usar la electricidad al máximo. Los libros y videos que tratan el tema de los campos electromagnéticos, tanto como las “Gauss Meters” (que detectan y miden los campos electromagnéticos) están disponibles a través del Instituto Internacional para la Ecología y Biología Bau (IBE), y su dirección es: Inc, P.O. Box 387, Clearwater, Florida 34615.

PUNTOS DE ENLACE

Como los fardos de paja no tienen una buena superficie de ensamblaje, las provisiones deben hacerse a través de cabinas colgante, estanterías y otras cosas variadas, especialmente con paredes maestras hechas con fardos. Los objetos de peso ligero que requieren pequeños ensamblajes pueden a menudo situarse sobre muros interiores de yeso.

Una forma fácil de obtener una superficie de ensamblaje es atar un número de estacas afiladas de madera a la parte trasera de la pared, de una longitud de 2x4 y dirigirlas al fardo hasta que el 2x4 llegue hasta dentro del fardo. Una alternativa es poner la estaca de madera primero y atornillar el 2x4 o el 1x4 a las estacas. El saliente del 2x4 puede servir como un nivel para el yeso sobre la pared, lo que significa que la madera permanecería expuesta tras el yeso que ha sido aplicado. Eso hace que cualquier ensamblaje que se haga sea atado a la superficie de madera de forma mucho más fácil porque la madera es visible.
Si no está predeterminado el lugar donde todo va a colgarse, los 1x4 pueden ser usados en vez de los 2x4, y colocados al azar en los muros interiores donde parezca que algo va a poder ser colgado en un futuro. Los 1x4 son lo suficientemente estrechos para ser empotrados bajo el yeso. Pueden ser cubiertos de papel de edificar y alambrados a lo largo con el resto de la pared. Debería tomarse la precaución de anotar la localización de estas tablas para una futura referencia, aunque pudieran rebelarse; debido a que el yeso es más delgado sobre estas tablas, puede romperse (resquebrajarse). Cuando hay algo atado a ellas, también se necesita tener cuidado para mantenir los tornillos fuera de los trozos rotos de yeso cuando golpean la madera.

David Eisenberg ha sugerido cortar un lado de un travesaño de madera, insertando la parte de panel de madera entre una fila de fardos y clavándola en lugar de clavijas.

Inevitablemente, el problema llega cuando el edificio está terminado y hay una necesidad de colgar algo donde no se había previsto. Un agujero puede ser hecho a través del yeso y se puede poner una clavija de gran diámetro dentro del fardo como enganche. Si realmente los objetos pesados van a ser colgados, los tornillos podrían ser puestos en la pared a través del muro de forma que lo atraviesaran por completo.
CAPÍTULO 11: ACABADO DE PAREDES DE FARDOS

Para cualquiera que disfrute viendo paredes de color, los últimos retoques de yeso en las paredes de fardos, tanto interiores como exteriores, pueden ser una experiencia muy satisfactoria. El fardo es una especie de material flexible utilizado para la pared y que puede acoplarse a variadas formas. Desde luego, puede parecer un recubrimiento rígido y pueden ser cubiertos con madera o pladur pero tiende de forma natural a conseguir unas paredes irregulares que hagan parecer paredes antiguas de briqueta/madera.

Además de la estética, uno de los factores más interesantes de elegir yeso y color es el problema de la respirabilidad. Las paredes pueden sellarse dependiendo del grado de capacidad de respirar. Una pared que deje respirar permite que el aire de fuera se caliente o se enfríe cuando pasa a través de la masa de la pared antes de mezclarse con el aire interior. Si la pared se termina con una barrera de vapor, cemento, una capa elastomérica y una emulsión de látex, solo permitirá un intercambio de aire muy bajo. Si por casualidad entra humedad, tardará mucho tiempo en secarse, ya que no hay movimiento de aire y así facilitará la creación de hongos y descomposición. Por el contrario, una pared enlucida con yeso, tierra, y coloreada con cal puede ser más respirable, permitiendo una evaporación más natural y una ventilación de aire más rápida. Paredes con barreras de vapor fijas permiten un intercambio de aire entre 0,2 y 0,5 a la hora, mientras que una pared de fardos renueva entre 1,5 y 3 por hora. Crea por lo tanto un interior más saludable y toda la casa gozarán de una ventilación mucho más sana.

ENLUCIDO

Existe una gran variedad de escayolas que pueden conjugarse con las paredes de fardos. La elección de una escayola dependerá de cómo queramos que sea su dureza, nivel de mantenimiento, textura y tacto. Las escayolas suaves, como tierra y yeso, son agradables de tocar, fáciles de retocar, en ellas se puede clavar y tienen buena acústica pero no son fáciles de limpiar. Las escayolas más duras son más fáciles del limpiar pero tienen peor acústica y difíciles de reparar.

El enlucido puede acabarse con una capa fina, ordinaria o con textura. La última capa puede hacerse de tal manera que la arena salga al exterior para que la superficie perezca algo empedrada. También se puede realizar el último enlucido con la mano como se hace en África o en India. Los relieves también se pueden elaborar con estos materiales. Para el tipo de construcción de fardos, uno de los materiales más utilizados es el yeso. Hay que tener un cuidado especial para rellenar todas las cavidades y, dependiendo de cómo se aplique el yeso, puede haber un incremento de un 20 a un 70% en la cantidad de material usado comparado con una construcción tradicional. Por otro lado, la utilización de yeso nos puede dar la impresión de una estructura con fuerza, resistente, sobre todo, si todas las cavidades están bien recubiertas. Además, mejora la capacidad térmica del edificio.
Si se aplica alquitrán o pizarra para rellenar las cavidades, se necesitará menos yeso, aunque quedará la apariencia de un edificio más convencional, perdiendo un poco la peculiaridad de un edificio de fardos.

Las casas de fardos han sido enlucidas con o sin red de estuco o con hierro forjado. Hace falta siempre una malla para que el yeso se adhiera a la pared. Esta malla refuerza toda la estructura del edificio y le da más consistencia. Sin embargo, el estuco es quebradizo y, por eso, es incompatible con la paja. Esta última es un material suave y flexible que combina mejor con el yeso.

Trabajar con estuco es difícil, lleva mucho tiempo y no se sabe hasta que punto es necesario reforzar la malla en las paredes de fardos. Además, parece que causa inconvenientes en el campo electromagnético.

Algunas casas de fardos han sido enlucidas sin la malla de estuco. Barro, adobe, cemento de yeso u otros productos han sido aplicados directamente a los fardos, ya que estos últimos tienen una superficie rugosa donde se adhiere fácilmente el yeso. Todavía no está del todo experimentado este tipo de paredes, pero la apariencia es fantástica y recuerda a las casas señorial es.

La malla de estuco tiene diferentes resistencias. A veces, es preferible utilizar un hierro de calibre 17 que está diseñado para aplicaciones de tres capas. El hierro de calibre 20 está diseñado para una sola capa. La malla se puede clavar en el techo o en las maderas de los cimientos.

En las antiguas casas de Nebraska, se colocaban listones de madera para que el estuco se pudiera clavar. En nuestros tiempos, en vez de un cable, se utiliza bramante, que es más fácil de manejar que el hierro.
John Parson, de Rimrock, Arizona, desarrolló un sistema eficiente para adherir la malla de estuco a la paja de la casa de fardos. Utilizando un cable barato de 17 galvanizados, que viene en rollos de 1/4, John cortó larguras de cable y las dobló por mitades. Así, metía los cables a través de las cavidades con la punta de una aguja y lo unía a la malla del estuco en una parte de la pared. En la otra parte, agarraba las dos partes y las enroscaba para que estuvieran juntas.

Uno de los métodos mejor desarrollados fue el de Max Aragon cuando trabajaba en Munk House. Cortó pinchos de una largura algo superior a los fardos con un gancho en la terminación. Metió los pinchos a través de la pared hasta que el pincho agarraba el estuco con el fardo por una parte. En la otra parte, un colaborador suyo retorcía el cable sobre la malla de estuco con unas tenazas.

Algunos cables calibrados son más fáciles de doblar que otros. Los mejores son los más flexibles. Rollos de cable U, que normalmente van en rollos y se usan para colocar paneles en los techos, son los más utilizados por la compañía Tucson. Vienen ya predoblados y pueden desdoblarse. Entonces, las terminaciones se pueden agarrar al estuco por los dos lados de la pared y luego se pueden atar.

Las clavijas más pequeñas y en forma de U pueden ser útiles para atar la malla de estuco a extraños puntos a través de las paredes. Cuanto más duro el cable, mejor, pero también más caro. El cable se puede doblar en contra de su curva natural, por lo tanto, las terminaciones se acampanan, ayudándoles a permanecer más firmemente enganchadas en los fardos. Las clavijas en forma de U hechas de cable de la medida 11 (llamados sod-staples) también podrían servir. El truco al aplicar la malla de estuco es mantenerla firme y, al mismo tiempo, dejarla lo suficientemente floja para que el yeso se cuele entre el cable y el fardo.

Constructores de estuco han utilizado también listón metálico en toda la superficie de la pared de fardos en lugar de la malla de estuco. Debido a la superficie irregular de la pared de fardos y de todas las cavidades que se necesitan llenar, confiar en el listón metálico como superficie primaria para que el estuco se agarre, más que la superficie de los fardos, se considera más eficaz.

Por consiguiente, la primera capa se aplica principalmente al listón, lo que dejará muchas bolsas de aire y cavidades detrás del yeso. Haciéndolo de esta forma, incluso con el coste del tablón, probablemente es más barato. Sin embargo, hay gente que piensa que este método es cuestionable ya que
la mayoría de la fuerza de la capa de yeso estará en el listón de metal y no incorporado en la estructura de la pared.

Si la malla de estuco no es aconsejable, aún así se requiere algún tipo de refuerzo, una malla de tejido natural como el yute o el coco, utilizado para controlar la erosión, sería una alternativa. El tejido del coco tiene un entramado más prieto que el del yute. Ambos se encuentran a la venta en lugares que se dedican a materiales para el control de la erosión.

El papel de fieltro negro se ha usado ocasionalmente debajo de la malla de estuco para cubrir las paredes de paja antes de enyesar. Esto puede ayudar en el ahorro de las cantidades de yeso, pero el rígido papel no se ajusta bien a la superficie de una pared de paja y, como consecuencia, muchas bolsas de aire y cavidades pueden permanecer en la pared. La mayoría de los escayolistas no recomiendan este proceder. Si se utiliza el papel, se necesitarán más cierres de alambre para unir el tejido de estuco y así ayudar a mantener el papel liso contra los fardos de paja.

El anteproyecto para edificios de fardos de paja en Nuevo México no permite el uso de una barrera de condensación con objeto de permitir la transpiración natural del agua que procede de las paredes de paja.

En el anteproyecto para Tucson y Pima County, en Arizona, una barrera de condensación sólo se puede usar en el tercio bajo de la pared exterior para protegerlo del salpicón y entrada de la lluvia y la nieve. Muchos piensan que el uso de cualquier tipo de papel de construcción, barreras de vapor u otro material que no transpire no es bueno para las paredes de fardos de paja.

En la construcción con fardos de paja, la aplicación de yeso a mano es una de las partes que más tiempo lleva. Por eso, la utilización de spray en el estuco se ha convertido en una opción muy popular. Ha convertido la parte más laboriosa del proceso de construcción en una de las más rápidas.

Tradicionalmente, se aplican tres capas de yeso: el rayado, el moreno y la capa de acabado. Una opción que puede ayudar a ahorrar tiempo y trabajo es aplicar spray en la primera y, luego, las otras dos capas hacerlo a mano.

La primera, es decir, la de rayado, es la más difícil, porque debe cubrir todas las irregularidades y dar forma a la pared, así que, aplicando el spray en esta capa, además de ahorrar tiempo, ayudará a que el estuco entre en todas las cavidades de la pared.

Un constructor de California sugiere que se inyecten las paredes de paja con una mezcla de cemento seco que se moja en la boca del spray cuando se aplica. Debido a que es más seco que el spray de estuco, es muy duro y se puede aplicar en una capa.

Para los enyesadores, las paletas con esquinas redondas son más fáciles de usar que las tradicionales de esquinas cuadradas. Las paletas más pequeñas son más fáciles de usar y las esquinas redondeadas se deslizan en las superficies irregulares y curvas sin dejar marcas ni rayas.
Es importante recordar que se debe dejar tiempo para asentar las paredes que soportan peso (a menos que estuvieran pre-comprimidas) antes de aplicar el enyesado.

TIPOS DE ENLUCIDO

ESTUCO DE CEMENTO

El cemento es uno de los enlucidos más duros. Se adhiere bien a la paja, tiene larga vida y es muy resistente a las inclemencias. Puede irritar la piel, por lo que se aconseja ponerse guantes.

Las mezclas pueden variar dependiendo del clima y la localización. La mezcla no debe ser muy rica en cemento sino las paredes serán susceptibles de sufrir grietas.

Esta es la mezcla utilizada por Steve Kramer:

Primera capa (de rayado)

- 2 sacos de cemento
- 1 saco de cal
- 37 paladas de arena limpia

Capa tostada

- 1 saco de cemento
- 1 saco de cal
- 45 paladas de arena limpia

Acabado

- 1 saco de cemento
- 1 saco de cal
- 40 paladas de arena limpia

Arena fina o de sílice para un acabado uniforme

La capa “tostada” después de que la capa de rayado se ha asentado, lo que puede suceder o inmediatamente o en unos días. La capa de acabado se aplica generalmente cuatro días o una semana después de la capa “tostada”

El muro enyesado debería ser cubierto por un paño húmedo durante los primeros días para conseguir mayor fuerza y reducir el encogimiento. El cemento de estuco generalmente fragua en treinta días.
ENLUCIDO DE CAL

Fórmulas:

Agua de cal (de 2 a 3 por ciento de cal)
Se usa para humedecer la pared antes del enlucido, para mejorar la adhesión.
- 1/3 de palada de cal de tipo N
- mezclar con un bidón de 55 galones de agua

Masilla de cal
Se mezclan 5 sacos de cal de tipo N en un bidón de 55 galones de agua y se deja a remojo tanto como sea posible.

ENLUCIDO DE CAL BÁSICO

Primera capa:
- 5 partes de arena
- 1 parte de masilla de cal

Las paredes se humedecen con agua de cal antes de aplicar el enlucido de cal. El agua de cal se puede aplicar con una brocha o una pequeña bomba unida a una manguera de jardín.

Segunda capa
- 3 partes de arena
- 1 parte de masilla de cal

Esta segunda capa se puede aplicar casi inmediatamente, incluso antes de que la primera capa se seque.

Tercera capa
- 1 1/2 partes de arena
- 1 parte de masilla de cal

Es preferible aplicar el enlucido de cal en muros de adobe sin ayuda de alambre de refuerzo.

ENLUCIDO DE CAL CON MUCÍLAGO “NOPAL” (chumbera)

Si no hay chumberas a mano, se pueden utilizar los tallos del cactus “cholla” como sustituto.
- Mezclar 1 parte de masilla de cal y 3 partes de arena. Verterlo en el suelo y dejarlo secar al menos un mes; cuanto más tiempo, mejor.
- Dos semanas antes del enlucido, llenar un contenedor grande con hojas de chumbera o tallos de “cholla” desmenuzados. Rellenar con agua y dejarlo reposar entre una y dos semanas. Se formará un mucílago espeso. También se puede hervir para su uso inmediato, pero entonces debe usarse enseguida, ya que se estropea una vez hervido.
- Diluir el mucílago con unas 4 partes de agua y 1 de mucílago.
• Añadir el mucílago diluido a la masilla y arena secas; mezclar hasta que se consiga un enlucido con el que se pueda trabajar.
• El enlucido se echa en el muro rápidamente con una paleta puntiaguda.
• Se pasa una tabla por el muro para nivelar, dejando una superficie un poco rugosa.
• Se pueden aplicar dos o tres capas de enlucido adicionales con una paleta para un acabado uniforme.
• Después de que se haya asentado, la capa final puede ser pulida con una piedra de río fina de 6 pulgadas de diámetro para conseguir un acabado compacto y pulido.

ENLUCIDO DE CAL CON GEL NOPAL - FÓRMULA N° 2

• Llenar un barril o container con nopal desmenuzado o chumbera, y cubrir con agua. Dejar reposar una semana.
• Mezclar 1 parte de nopal líquido con 2 partes de cal viva u óxido de calcio
• Esperar 24 horas y tamizar cualquier grumo. Diluir con agua y mezclar con 3 ó 4 paladas de arena para hacer la argamasa.

ENLUCIDO DE CAL CON CEMENTO PORTLAND (del norte de México)

• 4 partes de cal
• 1 parte de cemento
• 17 paladas de arena

ENLUCIDO DE TIERRA

Además de tener una elevada respirabilidad, el enlucido de tierra puede ser duradero y bello. Su principal desventaja es que no es resistente a la humedad, aunque permite una rápida evaporación de la humedad. Es más apropiado para utilizarse en paredes interiores.

La argamasa de tierra comienza con tierra que tiene menos de un 30% de arcilla. Igual que con los pisos de tierra, es preferable una combinación de un 80% agregado a un 20% de arcilla y sedimento. Si la mezcla se resquebraja demasiado, se necesita más arena.

No existe una mezcla básica que pueda ser usada universalmente. Si es demasiado pegajosa, la mezcla tiene demasiada arcilla; si no cuaja, tiene demasiada arena. La tierra puede ser tamizada con una
criba de 1/4 de pulgada.

Fibras como paja, hierba, pelo animal, y fibras de plantas suelen añadirse como refuerzo a la capa base interior y exterior. De todas ellas, la paja es la más usada. Se utilizan hebras de 1 a 1 1/2 pulgadas en una medida de un puñado grande por cada 10 paladas de tierra.

Es esencial aplicar la argamasa de tierra arrastrándola por la superficie de la pared en un movimiento horizontal, lo que fuerza a la paja a una alineación horizontal. Esto es importante porque, cuando la lluvia azota la paja situada en horizontal, el agua se partirá y se deslizará por la pared en vez de correr en riachuelos y erosionarla, como sucedería si la paja estuviera alineada en vertical.

A menudo, se utilizan estabilizadores naturales como nopal, cholla o abono animal con el enlucido de tierra. Se puede añadir ceniza para que sea más fácil trabajar con ellos.

A los muros enlucidos con tierra se les suele aplicar una fina capa final llamada alis, que es, esencialmente, una capa en la que se mezcla arcilla tamizada hasta conseguir una consistencia como de pintura y se aplica con una brocha o rodillo. El alis se pule con una piedra de río o guijarro mientras todavía está húmedo. Con el pulido se reduce el agrietamiento.

A veces, se utiliza asfalto para estabilizar la argamasa de tierra. Un galón de asfalto se mezcla previamente con agua y después se añaden 30 paladas de arcilla. El asfalto ayuda a conseguir un enlucido exterior muy duradero. También se puede utilizar cemento como estabilizador, en un 10% para tierra arenosa, y en un 12 ó 13% para tierra arcillosa moderada.

ENLUCIDO INTERIOR DE YESO

El yeso no es apropiado para uso exterior porque es altamente absorbente de humedad. Es fácil para trabajar con él y suave al tacto, fragua rápidamente y es poroso y respira.

Se recomienda el yeso como capa base, pero puede ser utilizado en las tres capas.

TECNICAS BASICAS DE ENLUCIDO

Para enlucir las paredes exteriores es mejor hacerlo en condiciones moderadas. Deben ser descartadas las temperaturas extremas, así como la lluvia o el viento. El viento puede quemar el yeso y hacer que frage muy rápido. Por otra parte, el enlucido de las paredes del interior se puede realizar casi en cualquier época del año, porque el clima del interior del edificio es relativamente fácil de controlar.

El trabajo de preparación de una estructura de fardos es muy similar al de cualquier otro tipo de edificio. Sin embargo, como se ha mencionada anteriormente, es esencial que con estructuras de muros de carga de fardos el asentamiento haya sido completado anteriormente.

Preparación

Toda la madera que haya de ser recubierta de yeso debe ser cubierta con un papel de fieltro negro
para evitar que por la humedad se hinche la madera y se agriete el yeso, en los lugares donde se use el papel negro es necesario algún tipo de refuerzo de malla para que el yeso tenga donde adherirse.

Los listones de bandas de metal expandido alrededor de puertas, ventanas y juntas incrementan la fuerza y facilitan el que fragüe. Con edificios de relleno de fardos, es normalmente una buena idea conectar la trayectoria alta de los fardos en la pared con la viga que soporta el tejado.

El suelo deberá ser cubierto con trapos o algunos otros materiales baratos como plástico. El recubrimiento elegido debe tapar el suelo para evitar que el yeso se introduzca debajo. Tapar y cubrir las puertas, ventanas, marcos y dinteles para mantenerlos limpios.

Finalmente, llenar las grietas de la pared con el yeso, dejando que se fragüe antes de dar la argamasa.

Herramientas para el enlucido

- Llanas limpias. Se necesita una llana cuadrada para las esquinas y los ángulos de 90 grados.
- Una llana para esquinas, doblada en el medio, hace más fácil el acabado en las esquinas.
- Una espátula para masilla de 3 a 4 pulgadas para detallar las áreas de difícil acceso.
- Un tablón para sostener la argamasa mientras se aplica.
- Utilizar las manos para aplicar argamasa de tierra puede ser más eficaz que las llanas, que sólo se necesitan para el acabado final.
- Un “darby”, llana larga y delgada usada para nivelar grandes secciones de pared.
- Una brocha limpia y un cubo de agua.
- Un rastrillo para argamasa (una herramienta para rascar).
- Una carretilla.
- Un tablero para trasladar la argamasa de la carretilla antes de ponerla en el tablón de los enyesadores.
- Un andamio, si es necesario.

Hay que mezclar una pequeña porción de argamasa de prueba para ver como funciona. Primero, mezclar en seco los materiales, añadiendo agua de forma gradual. Las mezclas más espesas se adhieren mejor a la superficie del muro.

Aplicar las capas de rayado y tostada

Un buen lugar por donde empezar a enlucir es el centro del muro, trabajando en segmentos a través de la superficie del muro. Aplicar la argamasa con un movimiento hacia arriba. La capa de rayado
puede aplicarse tan espesa como sea necesario para nivelar la superficie del muro, si así se desea. La capa tostada debería dar al muro su forma final preparándola para la capa de acabado.

La superficie de la capa de rayado puede ser “rastrillada” con un pequeño rastrillo para argamasa y así mejorar la adhesión de la capa tostada, que puede aplicarse en cualquier momento después de que la capa de rayado haya fraguado, o se haya endurecido. Después del fraguado inicial, la argamasa debería ser mantenida húmeda varios días para ayudar a que cure.

Aplicar la capa de acabado

Se utiliza a menudo arena fina y arena de sílice porque ofrecen más control y proporcionan el acabado más suave posible.

Un acabado de arena con textura se consigue usando un corcho de esponja húmedo que se mueve haciendo un dibujo circular a través del muro mientras se va salpicando con agua. Esta técnica hace que quede al descubierto la arena de la argamasa.

Un acabado suave se consigue con repetidos pases de la llana y rociando con agua.

DAR COLOR A LAS PAREDES

La forma más común de decorar y proteger un muro enlucido es con una emulsión de pintura de látex o vinilo, moderna, con una base de agua, que se producen comercialmente de acetato de polivinilo o “polímeros” acrílicos.

La superficie gruesa y desnivelada de los muros de fardos ofrece la oportunidad de crear una bella superficie realizada a mano utilizando métodos tradicionales.

Al contrario que las pinturas de látex., muchas fórmulas tradicionales penetran y son absorbidas por la superficie del muro. Muchas permiten que el muro respire más que aislarlo.

Impermeabilizantes y color integral

Las capas de acabado de algunas argamasas son tan bellas que no requieren color adicional.

Un penetrante aceite impermeabilizante no sólo protegerá el muro sino que le dará una apariencia ligeramente envejecida.

Se pueden añadir óxidos y pigmentos a casi cualquier tipo de argamasa para dar color a la capa final. Se pueden mezclar de modo uniforme para crear un color uniforme o mezclarse de forma irregular para dar más variedad en tono y textura. La capa final exterior de la argamasa con base de cemento se conoce comúnmente como la capa de color.

LECHADA DE CAL

Tiene una cualidad suave y mate que es agradable al tacto y, cuando se prepara adecuadamente,
suficientemente resistente y duradera. Es porosa y permitirá que la humedad atrapada en el muro se evapore. No se abombará ni pelará, sino que madurará y se suavizará con el tiempo. También actúa como desinfectante.

Se puede aplicar a muros enlucidos con cal, tierra o yeso. Normalmente, es blanca, pero puede colorearse con pigmentos. Los pigmentos resistentes a la cal incluyen el amarillo ocre, sienna, ocre oscuro, azul cerúleo, azul cobalto, azul marino, rojo óxido y óxido de cromo.

La lechada de cal puede mezclarse también con leche para hacer pintura de leche. Es cáustica cuando está mojada y debe manejarse con cuidado.

Fórmula básica para la lechada de cal

- Mezclar 4 puñados de cal apagada o hidratada con medio galón de agua. Burbujeará y echará vapor, tener cuidado de no inhalarlo.
- Remover para disolver los grumos una vez que haya acabado la reacción. Añadir suficiente agua hasta alcanzar la consistencia deseada.
- Colar para deshacer los grumos.
- Mezclar los pigmentos separadamente con una pequeña cantidad de agua y añadir al baño.

El color siempre será algo más claro cuando seque que la mezcla húmeda.

Fórmula n° 2 de la lechada de cal

- Añadir 12 galones de agua caliente a una bolsa de cal apagada.
- Añadir 1 libra de sulfato de cinc.
- Añadir 2 cucharadas soperas de sal disuelta en 2 galones de agua caliente o hirviendo
- Mezclarlo todo con 2 galones de leche descremada.

Aditivos de la lechada de cal

Para mejorar su durabilidad se puede añadir aceite de linaza, espesante acrílico y sal, entre otros.

Pintura de caseína de cal

Se utiliza leche desnatada agria para conseguir pintura con una base de caseína. Básicamente, se separa la cuajada de la leche agria y se lava, seca y hace polvo. Adquiere capacidad de cuajar cuando se le
añade un material álcali (generalmente cal apagada) para hidrolizada, creando cola de caseína.

Fórmula

- Mezclar a partes iguales agua y caseína de cal en polvo hasta que el polvo se integre completamente.
- Añadir agua hasta alcanzar la consistencia deseada.
- Añadir pigmentos resistentes a la cal para obtener el color deseado.

Pintura de caseína de amonio

Pintura con base de leche que proporciona un acabado transparente, la caseína de amonio utiliza carbonato de amonio en vez de cal. Se suele añadir un pigmento blanco para hacerlo más opaco.

Fórmula

- Mezclar 1 parte de polvo de caseína con 4 partes de agua hasta que se disuelvan los grumos.
- Añadir 1 parte de carbonato de amonio y dejar reposar durante 30 minutos.
- Añadir más agua si es necesario hasta alcanzar la consistencia deseada.
- Añadir pigmento.

Pinturas al temple con encalado

Se hacen con una mezcla de tiza, agua y cola. Proporciona una superficie muy suave y con un buen acabado. Como el lechada de cal, es permeable y permite la evaporación de la humedad del muro.

Se debería aplicar sobre una superficie recién enlucida o que haya sido tratada con un acabado similar. Se puede utilizar para paredes, interiores, aunque es necesario usar pinturas al temple con base de aceite -disponibles sólo como pintura manufacturada- en muros exteriores.

Se aplica tradicionalmente en una capa, y en líneas rectas.

Preparación del muro

La superficie de un muro recién enlucido debería ser preparada con cola para reducir la porosidad antes de aplicar pintura al temple con encalado. La mayoría de las colas son productos animales, como piel de conejo y piel de becerro.

Mezcla de cola (glue size)

- Mezclar 1 parte de cola con 20 partes de agua.
- Calentar hasta que los gránulos se derritan y se forme un líquido pegajoso. No hervir, porque se volverá quebradizo.
Aplicar mientras esté caliente.

Fórmula de la pintura al temple con encalado

- Mezclar 7,75 libras de tiza con 3 galones de agua. Remover bien, quitar los grumos y dejar que se asiente hasta que la tiza quede en el fondo.
- Combinar 4 onzas de gránulos concentrados de piel de becerro con 2,5 tazas de agua caliente, y dejar reposar durante al menos tres horas.
- Mezclar bien los ingredientes y calentar en una caldera doble hasta que se hagan líquidos.
- Quitar cualquier exceso de agua de la tiza.
- Añadir 1 cucharada de postre de pigmento azul marino a la tiza para contrarrestar el color de la cola y blanquear la mezcla.
- Filtrar y añadir la cola caliente a la tiza. Mezclar bien.
- Antes de que la mezcla se enfríe, añadir el pigmento para conseguir el color deseado. Si se desea un acabado regular, los pigmentos deberán ser diluidos primero con agua antes de añadirlos.
- Dejar enfriar; se conseguirá un gel espeso. Utilizar inmediatamente después de mezclarlo, ya que la mezcla no durará mucho.

Pintura al óleo sencilla

- Se puede hacer con casi cualquier aceite vegetal que se seque; el aceite de linaza es el más corriente. El aceite de oliva no se seca.
- Mezclar el pigmento con aceite de linaza, u otro aceite, hervido. Que sea lo suficientemente espeso para conseguir una especie de masa pesada.
- Añadir suficiente aceite para hacer la mezcla más líquida, hasta que fluya.
- Añadir trementina hasta que la mezcla parezca una especie de salsa de chocolate.
- Filtrar con una estopilla, muselina o nylon.

Baños coloreados

- Se pueden conseguir diluyendo cualquier pintura con base de agua, como un acrílico, guache, o pintura en emulsión (látex), con agua. Las pinturas al óleo pueden diluirse con alcohol mineral. Un baño simple de color de látex utiliza 1 parte de pintura de látex con 5-9 partes de agua. Estos baños deberán aplicarse ligeramente, dejando sin cubrir buena parte de la capa base o baño que haya debajo. Cada capa necesita secarse completamente antes de añadir más para evitar desplazar el color previo.
- Hay varias técnicas usadas para aplicar el baño, y cada una de ellas crear una textura única. Arrastrar una brocha limpia hacia abajo sobre un baño recién aplicado creará un efecto rayado, un trapo arrugado pasado por la superficie producirá un acabado suave y abigarrado; mientras que un muro tocado
ligeramente con una esponja dará una textura jaspeada. El método más fácil y rápido es utilizar una brocha larga para dar el baño con movimientos entrecruzados consiguiendo un aspecto cálido y desgastado.

Pinturas de muro naturales

La pintura de muros es una dispersión, con base de agua, de resinas naturales, aceites, cera de abejas y pigmentos que se producen con un mínimo de daño ambiental.

Nitrato férrico y sulfato ferroso

Son dos productos con bases de hierro, disponibles a través de casas de suministros de jardín o químicas, que pueden ser diluidos con agua y utilizados para dar color al acabado del enlucido interior y exterior. Pueden mezclarse en una proporción de alrededor de 50 a 80 libras de agua.
Las paredes hechas con fardos de paja pueden proteger casas, jardines y patios. Los fardos pueden proteger la realización de actividades sociales con mucho menos trabajo y mucho menos dinero que con otros materiales. Permiten hacer las paredes gruesas para que jueguen los niños/as, para zonas de reposo resguardadas o para una excelente protección de sonido.

Uno de los ejemplos que tenemos de las paredes de patio son las construidas por Bill Hayes y Cadmon Whitty.

Cadmon Whitty estaba preocupado por los problemas de estabilidad, por la habilidad del cemento (especial para paredes) para soportar el tiempo y la humedad, por lo antiestético de la construcción, debilidad de cimientos.

Teniendo en cuenta estas preocupaciones, empezó a construir su primera pared de fardos de una manera muy conservadora. Utilizó una gran superficie para los cimientos, 18 pulgadas de ancho y 18 de profundidad, con 12 pulgadas extendiéndose sobre el suelo (hacia arriba).

Los fardos fueron amontonados cuidadosamente, con sólo 3 pies de alto y sólo en dos capas continuas. Todo fue apuntalado con estacas de madera de 24 pulgadas, dos por fardo. Cuando la pared fue hecha y enyesada, había quedado mejor de lo esperado, y quedó impresionado por su robustez.

Viendo los resultados tan satisfactorios, y que la pared hecha con fardos tenía la suficiente firmeza, emprendió la construcción de otras paredes atendiendo las necesidades de diferentes clientes. Así, comprobada la firmeza de la construcción, procedió a diseñar una pared minimizando la anchura del cemento cambiando el borde de los fardos, lo cual también ahorra la aplicación de yeso en la parte
superior de la pared. Para proseguir con el ahorro, utilizó una construcción de cimientos a base de dos nudos de vigas puestas sobre el suelo, cubiertas de cemento y conectadas a bloques de cemento los cuales estaban situados suelo adentro.

Los pilares anclaban los nudos al suelo y conectaban los mismos a los siguientes nudos situados en serie. Eventualmente, decidió que aunque este método era barato, era un trabajo muy laborioso.

Más tarde Cadmon descubrió el concepto de viga graduada, y la ingenió para conectas el peso de la paja y el drenaje del suelo de Nuevo México. Probó que era el método más eficiente para hacer la base y proteger los fardos de la humedad. Para facilitar el proceso, usó fardos como moldes para verter las vigas de hormigón.

Progresivamente más confiado, Cadmon estaba amontonando fardos a más de 7 pies de altura modificando la longitud de los fardos a 1/2, 1/4 y 1/8, cortando rincones y arcos, y escalonando las elevaciones en la pared. También las constituyó más finas, de 6 a 9 pulgadas de los fardos modificados de 1/2 y 1/3 de anchura. Las estacas de madera dieron pie a una longitud de 40 pulgadas, las cuales producían mucha mayor estabilidad que las estacas de 24 pulgadas.

Un buen acabado a base de yeso es crucial para la protección de las paredes de fardos. Cadmon utiliza un cemento especial para paredes del calibre 20 neto, el cual parece proporcionar la mejor relación calidad/precio. Utiliza también una mezcla de paja troceada y cemento especial para paredes para el techo de la pared para mejor drenaje. También adhiere paja en los rasguños de la capa de cemento.

Aunque no hayan tenido problemas con las paredes, algunas, especialmente aquellas que son largas, se le han roto. La rotura aparece en las juntas verticales que unen un fardo con otro.

Ted Varney utiliza juntas expansivas cada 6 a 8 pies. Aquellas paredes sin sujeción podrán beneficiarse de que el cemento no se quede duro, pasado, dejando que el cemento penetre profundamente en las juntas, permitiendo mucha mayor estabilidad a la estructura. Otra estrategia puede ser permitir la incorporación de más esquinas rompiendo las paredes e incorporando setos, plantas...

Las paredes de patio hechas con fardos son capaces de aguantar la humedad que producen la lluvia y la nieve. La diferencia fundamental entre una pared de patio hecha con fardos y una pared de fardos de un edificio es que no h–y un tejado que la tape y la resguarde de la humedad. El cemento especial para paredes está llamado a cumplir la función protectora del tejado. Las observaciones iniciales nos dicen que es capaz de hacerlo.

Es aconsejable impermeabilizar la parte superior de la pared, y que el fondo de los fardos esté protegido de la humedad mediante la suficiente elevación sobre la pendiente y deshumidificando los cimientos. Para proteger la parte superior de la pared de la humedad, materiales como la piedra o la teja, conjugándolos con materiales aislantes, pueden cubrir la capa superior. La capa compuesta por cemento mezclado con paja da protección a los fardos. Es necesario un buen drenaje para mantener el agua fuera de
la pared; los drenajes deben ser establecidos en los cimientos, en la porción de éstos que está sobre la pendiente para que el agua pase cuando sea necesario. Las plantas que haga falta regar o los cauces crecientes deben de estar lejos de la pared.

OTRAS ESTRUCTURAS

Almacén

Unas de las más viejas estructuras conocidas de paja son los almacenes de manzanas de Inglaterra. Estas ligeras estructuras enmarcadas de madera que tienen paredes de rejilla suspendidas con fardos de paja hacen que haya una buena ventilación y un buen aislamiento excelente para el producto. Antes eran muy comunes pero hoy en día muy pocas son utilizadas.

Los fardos han sido utilizados durante muchos años para hacer grandes almacenes para conservar patatas y otras verduras y, hasta hace pocos años, sin yeso. Pueden ser usados para otras muchas aplicaciones si son reforzados con yeso y clavijas. Mike Evans consiguió que su almacén hecho con yeso y paja sólo tuviera una oscilación de temperatura de 50 durante todo el año.

Tanques aislantes y almacenes de agua

Pueden ser utilizados fardos enyesados para encajar estructuras de hormigón que guardan depósitos de agua. Se ha de tener en cuenta la impermeabilidad.

Edificios comerciales, estudios
Espacios para el esparcimiento

Un simple fardo sin enyesar puede servir de asiento, pudiendo durar años. Para una mayor durabilidad, hay que aislar los asientos del suelo y protegerlos de la humedad. La mayoría de los asientos son enlucidos con el cemento especial para fardos, no obstante es mejor tapar la superficie con baldosas o piedras.

Si se combina con una estructura de paredes de patio, se pueden conseguir respaldos. Se le puede añadir pendiente al respaldo y apoya brazos. Los asientos, si son puestos pared con pared de la casa, pueden servir como reforzamiento de la estructura.

USOS PARA LA AGRICULTURA Y JARDINERÍA

Granjas y graneros

Lo barato y fácil de construir con fardos hace de estas granjas, sean enlucidas o no, un buen refugio para animales. Si los fardos no son enlucidos, corren peligro de ser comidos, así que mejor vallarlos. Pueden ser usados enlaces de cadenas para proteger las paredes.

Dexter Johnson, ingeniero retirado ha estado construyendo y promoviendo edificios de fardos temporales para granjas de praderas. Sus resultados han sido excelentes, incluso con fardos grandes y redondos.

En Inglaterra, utilizan grandes fardos de 4x4x6 pies, con un marco de metal modulado y techo de plástico. Estos edificios pueden hacerse de cualquier tamaño y con gran rapidez.

Los edificios de fardos son especialmente idóneos para los cerdos. Son temporales, pero dan un resultado muy satisfactorio, ya que hay que renovarlos anualmente por sanidad, han de ser quemados. Estas estructuras ayudan a que el cerdo engorde y evita las morcjaduras de rabo y peleas. Los beneficios del granjero aumentan.

Otra experiencia ha demostrado que los cerdos que están en habitáculos de fardos parecen más felices y no huyen de la presencia humana. Además, comen menos y producen más carne.

Pueden se construidas granjas permanentes con cualquiera de los método antes expuestos. El edificio estilo Nebraska es muy apropiado para ciertos usos. Pliny Fisk diseñó un modelo de granja para el Departamento de Agricultura de Texas usando paredes de armazones de paja. Los armazones de ligero metal plegable y los tejados de metal pueden ser usados en otras zonas. El proyecto incluía cinco construcciones de fardos enyesados, tres con acabados de cemento y dos embellecidos a paleta.

Para granjas que necesiten muchas aberturas para acceso u otros usos lo más apropiado es una estructura de armazón con rellenos de fardos. Estructuras de madera, graneros con postes y estructuras de metal pueden ser utilizadas.
Invernaderos

Las paredes de los invernaderos pueden ser construidas con fardos de paja creando un ambiente aislado y perfecto para las plantas. Para estructuras temporales, no hace falta enyesar los fardos, renovándolos cada año. Las permanentes han de ser enyesadas y detalladas para mantener el agua fuera.

Paredes de jardín temporales

Se pueden utilizar fardos para proteger jardines del viento y depredadores, en busca de un vallado defensivo. Cuando la pared ha servido para su fin, puede ser utilizada como abono.

Depósitos de agua

Pueden utilizarse fardos para recoger el agua sin tener que hacer ningún agujero. Mientras se descompone, se ha de establecer un seto o vallado permanente en el contorno. Se pueden hacer depósitos más pequeños cortando los fardos.

Pilas de abono compuesto

Ver libro *Four Season Harvesi* de Eliot Coleman.
CAPÍTULO 13: DISEÑAR LA CASA DE FARDOS DE PAJA

El arquitecto Bob Theis habla sobre el diseño de casas de fardos:

La temprana historia de las construcciones con fardos de paja estuvo caracterizada por edificios bastante convencionales, con fardos incorporados en sistemas de muros y usando componentes tradicionales sobre, bajo y alrededor de esos muros. En esos casos, los fardos de paja se usaban simplemente como bloques de grandes dimensiones.

Los fardos no se parecen a ningún otro material: son macizos, pero no pesados como la piedra o la tierra; simples para trabajar con ellos, rápidos de levantar, pero muy adaptables. La característica más destacada de este tipo de construcción es su flexibilidad.

Es esta flexibilidad la clave del potencial de los fardos de paja. Los fardos ofrecen informalidad y la oportunidad de personalizar nuestros entornos, que perdimos cuando cambiamos las tradiciones de nuestros edificios vernáculos por los edificios industriales.

La decisión de construir es una oportunidad de darse cuenta del contexto en el que se vive, incluyendo las condiciones de las estaciones en tu clima, los materiales locales y tradicionales de tu región, y el medio ambiente más amplio, que incluye a las otras personas que viven a tu alrededor.

LÍNEAS GENERALES DE CONSTRUCCIÓN

1. QUE SEA PEQUEÑO Y SENCILLO

Las estructuras pequeñas y sencillas necesitan menos materiales, son más fáciles de construir, cuestan menos, utilizan menos energía, y son en el interés de todo el mundo. Una casa no necesita ser grande para ser bella y funcional; el espacio es a menudo un artículo de consumo malgastado. Los espacios más pequeños pueden ser más íntimos, haciendo que la gente conecte con el edificio y los unos con los otros.

2. LIMITA LOS DISEÑOS

Nos parece que la gente produce resultados más creativos cuando se les permite aprender de lo que están haciendo y hacer ajustes y mejoras durante el proceso.

3. USA FARDOS COMO FARDOS

Diseña y construye de forma que te beneficiés de las características naturales de los fardos, en lugar de intentar hacer que se ajusten a diseños y métodos para los que no son aptos.
4. USA MATERIALES LOCALES

Los edificios creados del medio ambiente natural que les rodea son, a menudo, más bellos, sostenibles y considerados con lo ecológico que los edificios convencionales.

5. USA MATERIALES NATURALES Y SEGUROS CON EL MEDIO AMBIENTE

Usa materiales recuperados y reciclados. Busca productos que sean manufacturados con seguridad y que no causen un aumento de carbono o una reducción del ozono. Materiales naturales con baja energía incorporada, como madera, tierra y piedra, son preferibles a materiales que necesitan cantidades significativas de energía para ser producidos, como cemento y metal. Evita el uso de productos derivados de la madera, que suponen la tala de bosques viejos o tropicales.

6. SELECCIONA UN BUEN LUGAR

Evita las cimas de las colinas. Además de ser altamente susceptibles al viento, la erosión y el fuego, los edificios situados en la cima de una colina a menudo rompen la unidad natural del paisaje. Es importante que haya grandes árboles de hoja caduca situados al este y oeste del edificio para impedir que entre el calor de las primeras horas de la mañana y de las últimas horas de la tarde. Se pueden usar árboles de hoja perenne como protección contra el viento en los lados norte y noroeste de la casa para bloquear los fuertes vientos del invierno. Las laderas situadas hacia el sur ofrecen un buen acceso de la luz del sol y proporcionan buena renovación del aire y protección contra las heladas, y, generalmente, proporcionan uno de los emplazamientos para edificios más versátiles.

7. DISEÑA Y CONSTRUYE CON LA FAMILIA, AMIGOS, Y COMUNIDAD

Construir con la familia y amigos no sólo reducirá los costes sino que el edificio resultante dará una sensación mucho más personal.

8. RELACIONA ESPACIO Y FORMA CON EL CONTEXTO

Cuanto más se parezca una estructura a las características de su contexto natural, más pertenecerá al lugar. Refleja las formas nativas y permite que lo que estás construyendo sea moldeado por el tiempo.
FUNDAMENTOS DE LA ENERGÍA SOLAR PASIVA

Los ingredientes de una estructura solar bien construida incluyen un caparazón bien aislado, masa térmica, orientación este-oeste, una forma del edificio apropiada para un ambiente determinado, buen emplazamiento de las ventanas, y un beneficio solar directo, que tiene lugar a través de cristaleras orientadas al sur. Así, se puede conseguir una casa que se calienta y enfría por sí misma.

1. **Caparazón aislante exterior**

 Cuanto mejor ser el aislamiento de los muros, tejado, cimientos, suelo, puertas y ventanas (el caparazón de la casa), menor será el escape de calor y frío del interior al exterior de la casa.

 A menudo, es difícil aislar bien puertas y ventanas que pueden ser las zonas de la casa con mayor pérdida o ganancia de calor. Una estructura super-aislada y bien sellada, con pocas o ninguna abertura, conservará eficazmente el frío o el calor dentro del edificio. Las aberturas par ventanas para tener luz y ventilación disminuirán la cantidad de calor conservada, pero pueden hacer que aumente el calor, una fuente gratuita de calefacción. Además, la ganancia de calor puede limitarse durante los meses de verano si la casa está adecuadamente orientada para funcionar con los movimientos cíclicos naturales del sol, recibiendo luz solar en invierno y excluyendo la fuerte luz solar del verano con métodos de sombreado.

2. **Una buena orientación solar**

 Idealmente, una casa debería estar orientada hacia el sur verdadero, no al sur magnético, pero una casa que esté a 15° al este o al oeste del sur verdadero todavía podrá recibir el 90% del sol disponible. Cualquier brújula buena o mapa ayudará a determinar cual es el verdadero sur para un emplazamiento concreto; también valdrá utilizar la estrella del norte para representar el polo opuesto al sur verdadero. Si la casa es rectangular, alinear la parte más larga del rectángulo con el eje este-oeste.

3. **Colocación de las ventanas**

 El desafío es conseguir el máximo de calor y aumento de luz en los meses de invierno y un mínimo de aumento de calor en los meses de verano, al mismo tiempo que una buena ventilación y vistas. En una casa debidamente orientada, las ventanas que dan al sur permiten que el sol entre en la casa durante el invierno, y, por la diferencia de la trayectoria solar en el verano, habrá menos luz solar directa...
durante la estación cálida. Las ventanas orientadas al norte no tendrán aumento directo de sol ni en invierno ni en verano. Las ventanas orientadas al este siempre recibirán sol por las mañanas, lo que puede ser muy efectivo para calentar la casa temprano por la mañana durante el invierno. Las ventanas orientadas al oeste siempre tendrán sol por las tardes, lo que es poco deseable durante el verano. Los tragaluces en lo alto dejaran que haya calor y luz durante todo el día, todo el año.

4. Cristaleras orientadas al sur

En diseños solares, las cristaleras orientadas al sur son el principal elemento generador de calor. Cuanto mayor sea la superficie de cristal orientada al sur, más ganancia de calor habrá. Cuanto más cristal, sin embargo, menos aislamiento, y la capacidad de la casa para conservar el calor también se verá reducida, incrementando así la cantidad de pérdida de calor por la noche y durante las horas en las que no hay ganancia solar, y aumentando la cantidad de calor que entra durante el verano.

En climas fríos, con bajos niveles de sol invernal, es mejor tener un área mínima de cristal orientado al sur, quizá de un 4 a un 10% del metraje cuadrado de la casa, con tanto aislamiento como sea posible en los muros para poder confiar más en la retención de calor de los muros aislados que en la acumulación de calor.

Por otro lado, en climas fríos con una gran cantidad de sol disponible, es más efectivo incrementar la cantidad de cristaleras orientadas al sur, y confiar más en grandes cantidades de calor acumulado que en un alto aislamiento.

Los edificios solares en climas más cálidos, con altos niveles de sol de invierno, probablemente funcionarán mejor con los niveles más bajos (de un 4 a un 10%) de cristaleras orientadas al sur, minimizando la acumulación de calor no deseada.

5. Masa térmica interior

La masa térmica en el interior de un edificio puede almacenar calor o frío y después soltarlo lentamente al aire de alrededor.

La masa térmica es necesaria para prevenir el recalentamiento diurno de la estructura y para estabilizar su temperatura ambiente por las noches y periodos de tiempo nublado; cuanta más masa haya, más estable será la temperatura interior. También, cuanto más directo llegue el sol a la masa térmica, mayor será la ganancia de calor.

Los pisos pueden proporcionar un buen foco de masa. Cemento, ladrillo, losa u otros materiales de albañilería funcionan especialmente bien. Se pueden utilizar pisos de tierra pero no funcionan bien. El aislamiento bajo el piso ayuda a devolver la ganancia de calor al interior del edificio con mayor rapidez. Las paredes interiores de las casas a menudo se construyen con madera, pero si se construyen con
materiales de albañilería, como roca o adobe, pueden proporcionar una excelente masa, especialmente esas paredes interiores que reciben directamente el sol. El cemento entre los clavos sirve como forma rápida de añadir masa.

El agua es uno de los mejores materiales térmicos. El agua tiene una alta capacidad calorífica, lo que significa que puede conservar mucho calor (o frío) antes de soltarlo al aire de alrededor. Era corriente, en los primeros edificios solares, ver bidones de 55 galones llenos de agua y pintados de negro para almacenar ganancia solar. Se pueden fabricar paredes de agua o asientos con metal e incorporarlos en el muro sur de un edificio o situarlos cerca de una estufa de leña. El almacenaje de agua tiene la desventaja de posibles escapes.

Aunque su capacidad calorífica es menor que la del agua, también puede usarse piedra para conseguir masa térmica. Una forma fácil de crear una pared de roca al instante es usar gabions o cestas de alambre de gran calibre llenas de roca. Podrían servir como tabiques o divisiones y también podrían ser utilizadas para refrigerar en verano si se preparase el agua de manera que gotease por las rocas.

6. Cristal de aislamiento

El cristal de doble hoja o las ventanas con aislamiento minimizan la pérdida de calor a través de esas aberturas y tendrán muchas ventajas en todos los climas excepto los más templados.

El cristal de doble hoja está disponible con un espacio entre hojas que varía de 1/8 a 1 pulgada. Cuanto más grande sea el espacio entre las hojas, mayor será el valor de aislamiento. Sin embargo, si el espacio entre las hojas es demasiado grande (más de una pulgada) dejará que fluya el aire y, más que aislar, conducirá calor. También creará un efecto de sombra, ya que una hoja de cristal da sombra a la otra, reduciendo la ganancia solar.

Comprar cristales de doble hoja de medidas estándar o unidades de cristal aislante y construir las aberturas de acuerdo con esas medidas suele ser mucho más barato que encargar ventanas de medidas poco corrientes. Se pueden hacer en casa ventanas de doble hoja baratas utilizando cristales reciclados de ventanas con un espacio de 1/2 a 1 pulgada entre los cristales. Estos montajes deberán ser colocados con los topes puestos en su sitio para que las piezas puedan ser desmontadas fácilmente si la ventana se empaña por dentro.
7. Aleros solares y persianas

Puede usarse un alero bien situado para dar sombra a las ventanas orientadas al sur durante el verano, y permitir que entre la luz del sol cuando el sol está bajo durante el invierno. Generalmente, en los climas más fríos, un alero de esas características debería ser más estrecho para permitir que el sol entre a principios de otoño y avanzada la primavera, mientras que, en climas más cálidos, el alero puede extenderse más hacia el exterior, y así, eliminar la ganancia solar al principio de la primavera y retrasar su entrada hasta avanzado el otoño. Los aleros pueden medir entre 1 pie de ancho, en las zonas más frías, hasta 3 ó 4 pies de ancho en las calientes zonas de desierto.

Para medir correctamente un alero, hay que calcular lo que se conoce como “ángulo solar del mediodía de invierno” y el “ángulo solar del mediodía de verano”. (Mediodía de invierno = 90° menos la latitud, menos la declinación. Mediodía de verano = 90° menos la latitud, más la declinación.) Dibujar una sección transversal de la pared orientada al sur que muestre la localización del cristal en la pared. Proyectar el ángulo del mediodía de verano desde la base de la cristalera y después el ángulo del mediodía de invierno desde la parte superior de la cristalera. El punto de intersección de los dos ángulos es el punto final del alero.

Aleros portátiles y movibles y persianas permitirán un mayor control y flexibilidad que los aleros permanentes.

Las ventanas orientadas al este y al oeste necesitan tener sombra en el verano. Las persianas situadas verticalmente son mucho más apropiadas para este propósito que los aleros. Se pueden usar enrejados con espaldera o parras, entre otras cosas, como arbustos y árboles de hoja caduca. Es importante tener sombra no sólo donde entra la ganancia solar a través de las ventanas, ya que las áreas no sombreadas alrededor del perímetro de la casa también pueden reflejar mucho calor al interior del edificio.

8. Ganancia indirecta

Se puede conseguir ganancia de calor también a través de un invernadero en la parte sur del edificio desde el que puede distribuirse el calor al resto de la casa.

También pueden utilizarse paredes *trombe* que son, básicamente, cristaleras montadas sobre una pared de masa con un pequeño espacio entre la cristalera y la pared. La masa suele ser de un color oscuro para absorber tanta energía como sea posible. El calor pasa al interior de la vivienda por conducto directo o a través de respiraderos en la pared.
9. Balance de componentes solares

El Proyecto Canelo ha desarrollado un programa de ordenador que puede determinar el comportamiento térmico de un edificio dados sus materiales estructurales, aislamiento, aberturas para ventanas, orientación solar, capacidad de almacenamiento termal, y condiciones climáticas. El programa todavía no está disponible para su distribución general, pero se pueden hacer consultas técnicas al Proyecto Canelo.

10. Calefacción de apoyo y refrigeración natural

Se puede utilizar una estufa de leña que arda limpiamente. Si se usa poco, se puede utilizar leña cortada de forma sostenible. Las estufas con catalizadores y los hornos de azulejos son fuentes de calor radiante que queman poca cantidad de leña.

Cuando se necesiten sistemas de apoyo mayores, el calor puede ser distribuido usando una pequeña bomba que mueva el agua caliente desde una caldera a través de tuberías de plástico empotradas en los pisos de cemento, tierra o ladrillo del edificio.

En los lugares donde hay cantidades inagotables de abono compuesto, una pila de abono puede generar cantidades de calor significativas. Algunos diseños usan una bobina recolectora de calor que atraviesa la pila de abono compuesto, mientras otros colocan la pila de abono contra la pared del invernadero.

Para conseguir refrigeración, es más económico utilizar respiraderos protegidos con una pantalla que pueden cubrirse en las épocas frías del año con paneles aislantes. Para que circule el aire, algunos respiraderos deberían situarse justo sobre el nivel del suelo para recibir aire más frío y otros en la parte alta de la pared para dejar que salga el aire caliente.

Grandes cantidades de vegetación alrededor de la casa ayudarán a reducir la temperatura.

Los porches exteriores también proporcionan un área exterior cómoda durante las épocas calidas del año.

EVALUAR LAS OPCIONES CON MUROS DE FARDOS:

El muro de carga contra el muro de poste y viga modificado - por Paul Weiner

Probablemente la cuestión más frecuentemente discutida es si usar muros de carga o un sistema de poste y viga modificado.

Ya que un edificio de carga se asienta de forma diferente a los distintos puntos del muro y de las placas superiores, un diseño simple y agradable puede convertirse en una masa irregular.
Para empezar, se da por sentado que un muro de carga de fardos de paja de siete filas se asentará de 1.5 a 3 pulgadas al cabo de un par de meses bajo una carga de tejado normal. Se podría suponer que dividiendo la cantidad de asentamiento por el número de filas se conseguiría la cantidad de asentamiento por fila. Si no fuese porque los armazones estructurales de puertas y ventanas hacen que varíen el número de fardos de cualquier sección de muro, ese presupuesto sería cierto.

Si se utilizan dinteles (la mayoría de acero) sobre estructuras de puertas y ventanas, las cargas de encima del dintel se concentran en los dos puntos donde el dintel descansa en el muro a cada lado de la estructura. Ya que los fardos se comprimen, las cargas concentradas en esos dos puntos harán que los fardos se compriman más que los fardos de otros puntos del muro.

Con cualquier método hay problemas potenciales de asentamiento.

El sistema de muros de paja de carga conlleva problemas inherentes que requieren solución.

En mi opinión, con el sistema de poste y viga modificados se consigue un mejor producto que no está sujeto al inevitable asentamiento de los muros de carga de fardos y cuyo comportamiento y mantenimiento es más predecible.
FORMAS DE EDIFICIOS

El Octógono

La cabaña para invitados con forma T
Estructuras redondas
La casa de invitados de Bill y Nancy Cook en Sonoita, Arizona

Bill and Nancy Cook's guest house floor plan.
La residencia Lavina, en Dripping Springs, Texas

Alzado Norte de la residencia Lavina

Plano de la planta de la residencia Lavina

Plano de la planta
Residencia de Pam Tillman: Alzado Sur y plano de la planta
Residencia familiar solar de fardos de paja, conceptual

Plano de la planta de una residencia familiar solar-pasivo

El prototipo de varias plantas de Genius Locus
CAROL ANTHONY'S STRAW BALE CLOISTER

After Carol Anthony describes her New Mexico load-bearing straw bale cloister as a frozen slice of eighteenth-century time reflecting the inner courtyards and arcades of Italian villas. The building is only 400 square feet and is surrounded by a beautiful straw bale wall that incorporates a thatched African style, adobe granzary tower in one corner.

The cloister was built by a collection of friends in their spare time, with Santa Fe builder Ted Vaneq doing the walls. The process was in Carol's words informal and communal, "built with friends, great humor, tequila, a few bugs, and some delicious pastamines."

Her one-room building has an old-fashioned warmth with its front porch, old Mexican doors and shutters, and adobe earth floors. Plastered without stucco, the exterior is cement based, the interior a finely finished earthen adobe. A precious work of art.
THE KATHERINE WELLS AND LLOYD DENNIS RESIDENCE AND STUDIO

Katherine Wells and Lloyd Dennis first designed and built a straw bale studio and garage at their homestead in rural New Mexico. The owner-built studio is a Pueblo-style straw bale structure incorporating “pumice-crete” columns that extend from the foundation through the bales to a pumice-crete bend beam and parapet. Holes were augered through the bales for the poured columns. The bales used were all custom built not to exceed fifty pounds so that they could be worked with comfort. The building was courageously plastered on the exterior with an unstabilized adobe plaster, and has held up reasonably well considering that the building has no overhangs. The interior of the building was finished beautifully with an adobe plaster. The mix used contained local clay soil, sand, mule manure, and straw. The studio was completed at a cost of $14 per square foot.

The main residence, 1,224 square feet (outside), built a year later, was designed by Katherine and built by contractor Ted Vaney of Santa Fe. It is a simple, clean, and elegant structure made more impressive by the fact that it was completed at a final cost of $56 per square foot. There are two bedrooms and one bath, in addition to a large comfortable room for living, cooking, and dining. The structure of the house utilizes three concrete-block columns along both the front and the back of the building in combination with three laminated 2 by 10s for the beam. The house is heated with solar radiant floor heat.

BILL AND NANCY COOK’S GUEST HOUSE

Architect Bill Cook and his wife, Nancy, work at a firm and together built this wonderful, small (640 square feet) guest house. In addition to his practice, Bill teaches architecture at the University of Arizona and in Mexico City. The influence of contemporary Mexican architecture is evident in this structure, which was designed to match the style of their rammed earth main residence.

The structure of the house is a simple post-and-beam using T/J or l-beam joints for the flat roof. The parapets of the house are wood frame. A unique detail of this house is the deeply inset windows, which provide an overhang from the summer sun. The interior is finely detailed. The cost was $50 per square foot.
Bob Munk Residence

Bob Munk's 2,800 square-foot house in Santa Fe was designed by architect Beverly Spears, who is also secretary of the Straw Bale Construction Association. Bob was his own general contractor. The structural system of the house used straw bales as in-fill in combination with 16-inch core-filled concrete blocks for piers and an 8- to 10-inch wide reinforced-concrete beam on top of the walls. The 2-by-10 rafters were thickened later to 2-by-12 in order to accommodate two R-19 fiberglass insulation batts.

The house has two bedrooms, three baths, a studio above the main room, a garage with study above, and a kitchen with a large pantry. The great room has a beautiful, high, rough-sawn pine cathedral ceiling accented by curved collar ties and a row of south-facing skylights. Beautiful custom wrought-iron work adorns the stair railing and door hardware, crafted by Peter Joseph of Santa Fe. The entire house has adobe or earth floors that contain a mix of dried ox blood and manure. The cracks that remained after the floor dried were grouted with a lighter color clay to make the floor resemble flagstone. The floors were finished and sealed with linseed oil. Radiant floor heat was installed beneath the adobe floor.

The interior of the building was plastered with a base coat of fibered gypsum and topped with a beautiful finish coat of micaceous earth plaster, which gives a subtle sparkle to the walls. In some rooms, the earthen plaster incorporates blue corn meal. Builder Max Aragon was in charge of all the adobe finishes and floor.

The exterior of the building received cement plaster for the facade and brown coats (see chapter 11) and a finish coat of earthen plaster. A deep-gray metal roof completes the structure, allowing it to blend nicely into the pine- and juniper-covered hills.

According to very accurate records, the finished cost of the house ran $110 per square foot, including the custom wrought-iron work. This cost did not include any site development costs, such as purchasing the land or drilling the well.
The Jerry Rightman and Roberta Syme Residence

The beautifully finished Rightman and Syme residence was designed and built by Santa Fe builder Burke Deacon, vice president of the Straw Bale Construction Association. The house is a niche finished Santa Fe style building with a flat roof and parapet. The bale-in-fill walls are built around two columns that incorporate three upright or vertical 2 by 4s sheathed in 12-inch-wide plywood then filled with insulation, and 4 by 10s are used for the beams.

Viga, or peeled beams, are incorporated in the ceiling, and the house has brick floors throughout. An exterior bale wall encloses a south patio. The house is over 3,000 square feet and cost $95 a square foot.
The Richard Hughes and Clare Rhoades Residence

Built by artist-turned-builders Jerry West and Charlie Soudard of Santa Fe's Blue Raven Construction Works, and designed by architect Steve Robinson, this Santa Fe house is a 3,800-square-foot, two-story Pueblo-style home with a flat roof and parapets. It was built for around $120 a square foot. The second story is frame construction only because code required it; the architect had no qualms about building the second story of bales, instead.

This is a bile in-fill house, and the posts are built from 16-inch box columns that use a 2-in. x 6-in. on each end, are sheathed in fale board and stuffed with insulation, and are connected with a 2-in. x 10 beam.

The interior of the house is a coordinated but changing pattern of materials, colors, textures, and beautiful details that move through each room of the house. Passive solar design provides some of the required heating, testimony to the background of architect Robinson, author of the solar design book The Energy Efficient Home. The house has three bedrooms, two baths, a living room, kitchen, dining room, sunroom, and study.
Laurie Roberts and Lane McClelland's Studio

Laurie Roberts came home to San Diego County from a wall-raising workshop in San Juan Capistrano excited and ready to build a straw-bale studio. Her husband Lane thought she was out of her mind but decided to let her get the idea out of her system. Skeptical up to the time of the wall-raising, he watched people who appeared barely able to walk suddenly heaping bales around, feeling like they could actually build a house. It wasn't long before he was enthusiastically combining his talents as a craftsman and woodworker with Laurie's artistry. Together they created one of the most original straw-bale buildings anywhere. They even took the money they had budgeted for a new indoor kitchen (their present kitchen is outdoors) and spent it on the studio.

As is evident from the photographs, the building is round, made so by simply jumping on the bales to give them a curved shape, and cordially works its way around a nearby tree. The studio has load-bearing walls and a central pole in the middle of the building to support the roof, which is felt with a decorative thatch around the edges. The outside of the building is beautifully colored with ferric nitrate, which was used to stain the cement stucco. The ceiling is made of willow branches, the leaves sprayed with linseed oil to preserve them. The floor is soil cement colored with a diluted wash of ferric nitrate.

The studio is 450 square feet and was built for a total of $3,400, or $7.50 per square foot. A workshop was held for the wall-raising and generated net proceeds of $2,000. Consequently, the studio cost the owners $1,400 in out-of-pocket expenses.
THE THIERRY DRONET WORKSHOP
AND STABLE

This exquisite structure, located at Voses in the southeastern part of France, is a flowing S-shaped building that combines stable, workshop, and storage space. Designed by architect Jean Luc Thomas, it was owner-built in 1997 by Thierry Dronet with the aid of a workshop led by French Canadian French Tanguay. It uses straw bales set in a matrix of mortar for the east, west, and north walls. The south wall is built of stacked cedaredwood. The north bale wall is waterproofed and is bermed into the side of a hill. One of the most intriguing facets of the building is a mound-like and mound-like living roof. The roof was made by first covering its surface with waterproof membrane and bales of straw. A sufficient layer of decomposition was allowed to form, a thin layer of compost added, and then the entire surface was planted with living vegetation. (See "The Living Roof," page 163.)